

MARKSCHEME

May 2001

MATHEMATICAL METHODS

Standard Level

Paper 2

1.	(a)	Value $= 1500(1.0525)^3$	(M1)
		= 1748.87	(A1)
		= 1749 (nearest franc)	<i>(A1)</i>
			[3 marks]
	(b)	$3000 = 1500(1.0525)^t \implies 2 = 1.0525^t$	(M1)

$$t = \frac{\log 2}{\log 1.0525} = 13.546$$
 (A1)
It takes 14 years. (A1)

[3 marks]

(c)
$$3000 = 1500(1+r)^{10}$$
 or $2 = (1+r)^{10}$ (M1)
 $\Rightarrow \sqrt[10]{2} = 1+r$ or $\log 2 = 10\log(1+r)$ (M1)
 $\Rightarrow r = \sqrt[10]{2} - 1$ or $r = 10^{\frac{\log 2}{10}} - 1$ (A1)
 $r = 0.0718 \text{ [or } 7.18\%]$ (A1)

(A1) [4 marks]

Total [10 marks]

(;	a)	s = 7.41(3 s.f)	` .)							(G3) [3 marks]
(1	b)	Weight (W)	<i>W</i> ≤85	<i>W</i> ≤90	<i>W</i> ≤95	$W \le 100$	<i>W</i> ≤105	<i>W</i> ≤110	<i>W</i> ≤115	
		Number of packets								(A1)
(•	c)	· /	• • •		* *	cimately 9	6.8.			[1 mark]
		Answe	er: 97 (near	rest gram)						(A2)
		. ,	he graph, er: 101 (ne		-	artile is ap	proximate	ely 101.2.		(A2) [4 marks]
(d)	Sum = 0, since	ce the sum	of the dev	viations fro	om the mea	an is zero.			(A2)
		OR			,					
	$\sum (W_i - \overline{W}) = \sum W_i - \left(80 \frac{\sum W_i}{80}\right) = 0$						(M1)(A1)			
			()					[2 marks]
()	e)	Let A be the	event: W :	> 100, and	<i>B</i> the eve	nt: 85 < W	′≤110			
		$\mathbf{P}(A B) = \frac{\mathbf{P}(B)}{2}$								(M1)
		$\mathbf{P}(A \cap B) = \frac{2}{8}$	20 30							(A1)
		$P(B) = \frac{71}{80}$								(A1)
		P(A B) = 0.2	.82							(A1)
		OR								
		71 packets w Of these, 20	packets ha	ve weight						(M1) (M1)
		Required pro	bability =	$\frac{20}{71}$						(A1)
			= 0	.282						(A1)
]	Not	```				vith no reas				
L		Awaru up	10 (1412) 1		reasoning	or method	L.			

[4 marks] Total [14 marks] -9-

(a)

At

$$t = 2, \quad \binom{2}{0} + 2\binom{0.7}{1} = \binom{3.4}{2}$$
(M1)
tance from $(0,0) = \sqrt{3.4^2 + 2^2} = 3.94$ m (A1)

Distance from $(0, 0) = \sqrt{3.4^2 + 2^2} = 3.94$ m

[2 marks]

(b)
$$\begin{vmatrix} 0.7 \\ 1 \end{vmatrix} = \sqrt{0.7^2 + 1^2}$$
 (M1)
= 1.22 ms⁻¹ (A1)

(c)
$$x = 2 + 0.7t$$
 and $y = t$ (M1)
 $x - 0.7y = 2$ (A1)

(d)
$$y = 0.6x + 2$$
 and $x - 0.7y = 2$ (M1)

$$y = 0.6x + 2$$
 and $x - 0.7y = 2$ (M1)
 $x = 5.86$ and $y = 5.52$ (or $x = \frac{170}{29}$ and $y = \frac{160}{29}$) (A1)(A1)

[3 marks]

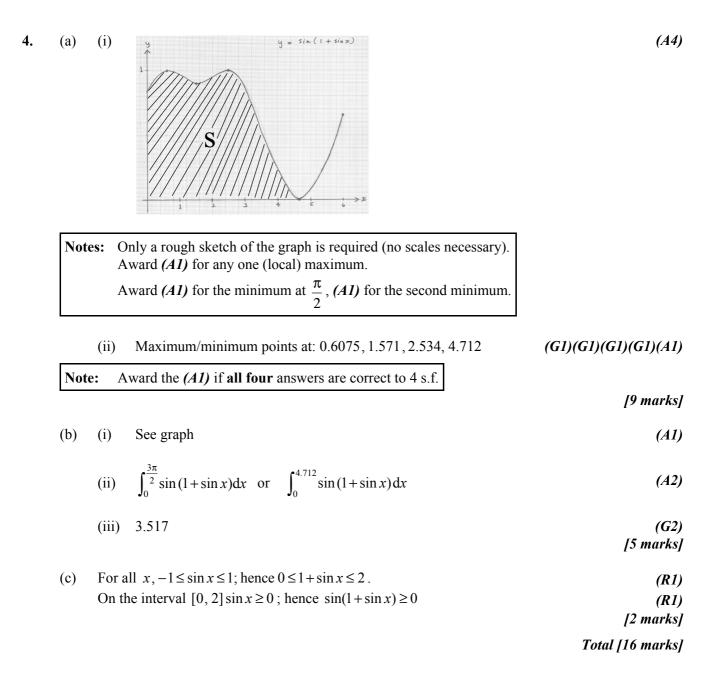
(e) The time of the collision may be found by solving

$$\begin{pmatrix}
5.86 \\
5.52
\end{pmatrix} = \begin{pmatrix}
2 \\
0
\end{pmatrix} + \begin{pmatrix}
0.7 \\
1
\end{pmatrix} t \text{ for } t$$
(M1)

$$\Rightarrow t = 5.52 \text{ s}$$
(A1)

[*i.e.* collision occurred 5.52 seconds after the vehicles set out]. Distance *d* travelled by the motorcycle is given by

$$d = \begin{vmatrix} 5.86\\ 5.52 \end{vmatrix} - \begin{pmatrix} 0\\ 2 \end{vmatrix} = \sqrt{(5.86)^2 + (3.52)^2}$$


$$= \sqrt{46.73}$$
(M1)

$$= 6.84 \,\mathrm{m}$$
 (A1)

Speed of the motorcycle $=\frac{d}{t} = \frac{6.84}{5.52}$

$$=1.24 \,\mathrm{ms}^{-1}$$

(A1) [5 marks] Total [14 marks]

M01/520/S(2)M

- 11 -

5. (a) (i) AP =
$$\sqrt{(x-8)^2 + (10-6)^2} = \sqrt{x^2 - 16x + 80}$$
 (M1)(AG)

(ii) OP =
$$\sqrt{(x-0)^2 + (10-0)^2} = \sqrt{x^2 + 100}$$
 (A1)
[2 marks]

$$\cos O\hat{P}A = \frac{AP^2 + OP^2 - OA^2}{2AP \times OP}$$
(M1)

$$=\frac{(x^2 - 16x + 80) + (x^2 + 100) - (8^2 + 6^2)}{2\sqrt{x^2 - 16x + 80}\sqrt{x^2 + 100}}$$
(M1)

$$=\frac{2x^2 - 16x + 80}{2\sqrt{x^2 - 16x + 80}\sqrt{x^2 + 100}}$$
(M1)

$$\cos O\hat{P}A = \frac{x^2 - 8x + 40}{\sqrt{\left\{ (x^2 - 16x + 80)(x^2 + 100) \right\}}}$$
(AG)

[3 marks]

(c)For
$$x = 8, \cos O\hat{P}A = 0.780869$$
(M1) $\arccos 0.780869 = 38.7^{\circ} (3 \text{ s.f.})$ (A1)

(b)

$$\tan O\hat{P}A = \frac{8}{10} \tag{M1}$$

$$OPA = \arctan(0.8) = 38.7^{\circ} (3 \text{ s.f.})$$
 (A1)
[2 marks]

(d)
$$O\hat{P}A = 60^{\circ} \Rightarrow \cos O\hat{P}A = 0.5$$

 $0.5 = \frac{x^2 - 8x + 40}{\sqrt{(x^2 - 16x + 80)(x^2 + 100)}}$
(M1)

(e) (i)
$$f(x)=1$$
 when $\cos O\hat{P}A=1$ (R1)
hence, when $O\hat{P}A=0$. (R1)

(ii) The line (OA) has equation
$$y = \frac{3x}{4}$$
 (M1)

When
$$y = 10, x = \frac{40}{3} (= 13\frac{1}{3})$$
 (A1)

OR

$$x = \frac{40}{3} \left(= 13\frac{1}{3} \right) \tag{G2}$$

Note: Award *(G1)* for 13.3.

[5 marks] Total [16 marks] 6.

(i)		Diagram Correl	ation coefficient	
		(a)	0.50	
		(b)	-0.60	
		(c)	0.90	
		(d)	-0.95	
		(e)	0.00	<i>(A4)</i>
Note:	A	ward (A1) for each correct answer, if not all a	nswers correct.	
				[4 marks]
(ii)	(a)	Regression line (after scaling down x and y l	by a factor of 1000)	
		y = 24250 + 18.5x (or $y = 24.25 + 18.5x$) for $y = 7000$ $y = 152750$ (or for $y = 7$ $y = 7$	152 75)	(G3)
		for $x = 7000$, $y = 153750$ (or for $x = 7$, $y = 7$) Predicted sales: 154,000 dollars (to the near	,	(A1)
		Fredicted sales. 134,000 donais (to the hear		(A1) [5 marks]
	(b)	A change of scale $x' = kx$ and $y' = ky$ affects	the mean and the standard	
		deviation but not the correlation coefficient no	r the gradient of the regression line.	
		\overline{x} changes		(A1)
		s_x changes		(A1)
		<i>r</i> remains the same the gradient of the regression line rem	ains the same	(A1) (A1)
		the gradient of the regression line rem		[4 marks]
(iii)	(a)	Let X be the random variable for the IQ. $X \sim N(100, 225)$		
		P(90 < X < 125) = P(-0.67 < Z < 1.67)		(M1)
		= 0.701		
		70.1 percent of the population (accept 70 pe	rcent).	(A1)
		OR		
		P(90 < X < 125) = 70.1%		(G2)
				[2 marks]
	(b)	$P(X \ge 125) = 0.0475$ (or 0.0478)		(M1)
		P(both persons having IQ ≥ 125) = (0.0475)	2 (or (0.0478) ²)	(M1)
		= 0.00226	(or 0.00228)	(A1)
				[3 marks]
	(c)	Null hypothesis (H_0) : mean IQ of people w	ith disorder is 100	(M1)
		Alternative hypothesis (H_1) : mean IQ of pe	ople with disorder is less than 100	(M1)
		$P(\bar{X} < 95.2) = P\left(Z < \left(\frac{95.2 - 100}{\frac{15}{\sqrt{25}}}\right)\right) = P(Z < \frac{15}{\sqrt{25}})$		
		-0	0548	(11)

= 0.0548 (A1)

The probability that the sample mean is 95.2 and the null hypothesis true is 0.0548 > 0.05. Hence the evidence is not sufficient.

(R1) [4 marks]

continued...

(iv)	(a)		Accept offer	Reject offer	
		Students	35.2	52.8	
		Teachers	20.8	31.2	(M1)(A2)
	Not	e: Award (M1) for row and column	n totals, (A2) for correct ca	lculations.
					[3 marks]
	(b)	$\chi^2 = 4.90$			(G2)
					[2 marks]
	(c)	-	freedom, the critical	value is 6.64	(A1)
		4.90 < 6.64			(<i>R</i> 1)
		Conclusion (iii)		(A1)
		OR			
		P(4.90) = 0.02	69		(G1)
		0.0269 > 0.01			(R1)
		Conclusion (iii)		(A1)
					[3 marks]
					Total [30 marks]

- 14 -

7. (a) (i)
$$\int_{r'(x)}^{r} \left(x + \frac{1}{2x} \times 2 \right) - (\ln 2x \times 1)$$
(M1)(M1)
Note: Award (M1) for the correct use of the quotient rule and (M1) for correct substitution

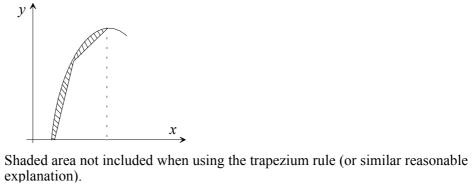
$$= \frac{1 - \ln 2x}{x^2}$$
(AG)
(ii) $f'(x) = 0$ for max/min. (R1)

$$\frac{1 - \ln 2x}{x^2} = 0$$
 only at 1 point, when $x = \frac{e}{2}$ (R1)
Note: Award no marks if the reason given is of the sort "by looking at the graph"
(iii) Maximum point when $f'(x) = 0$.

$$f'(x) = 0$$
 for $x = \frac{e}{2} (=1.36)$ (A1)

$$y = f\left(\frac{e}{2}\right) = \frac{2}{e} (=0.736)$$
(A1)
Note: Award (A1) per correct coordinate if the answer is found using the GDC, regardless of marks/

$$f''(x) = \frac{-\frac{1}{2x} \times 2 \times x^2 - (1 - \ln 2x) 2x}{x^4}$$
(M1)(M1)


$$= \frac{2 \ln 2x - 3}{x^2}$$
(A6)
Inflexion point $\Rightarrow f''(x) = 0$ (M1)

$$y = f\left(\frac{e^{1.5}}{2}\right) = \frac{3}{e^{1.5}} (=0.669)$$
(A1)

$$y = f\left(\frac{e^{1.5}}{2}\right) = \frac{3}{e^{1.5}} (=0.669)$$
(A1)

$$f''(x) = \frac{1}{2x} = \frac{1}{2x}$$

(R2) [3 marks] continued...

 $x \rightarrow$

Question 7 (c) continued

(ii)
$$u = \ln 2x; du = \frac{1}{2x} \times 2dx = \frac{1}{x}dx$$
 (M1)

$$\int \frac{\ln 2x}{x} dx = \int u \, du \tag{M1}$$

$$=\frac{u^2}{2}+C$$
 (A1)

$$=\frac{(\ln 2x)^2}{2} + C$$
 (A1)

(iii) Area of
$$S = \int_{0.5}^{\frac{e}{2}} \frac{\ln 2x}{x} dx$$
 (M1)(A1)

$$=\frac{\left(\ln 2\left(\frac{e}{2}\right)\right)^{2}}{2} - \frac{\left(\ln (2 \times 0.5)\right)^{2}}{2}$$
(M1)

$$=\frac{1}{2}-0=\frac{1}{2}$$
 (A1)

Note: Award only (A1)(M0)(M0)(A1) if the area (to 3 s.f. or exactly) is found on the GDC.

[4 marks]

(d)	(i)	If $x_1 = 1$, then $x_2 = -1.26$	(M1)
		$f(x_2) = f(-1.26)$ does not exist, so x_3 cannot be calculated.	(R2)
			[3 marks]

(ii)
$$x_2 = 0.4 - \frac{f(0.4)}{f'(0.4)} = 0.47297$$
 (A1)

Absolute error
$$= |0.5 - 0.47297| = 0.02703$$
 (A1)

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.49787 \tag{A1}$$

Absolute error = |0.5 - 0.49787| = 0.00213 (A1) which is less than 0.01.

Note: Absolute errors need not be explicitly given. Award (*A3*) if further terms are listed, without stating that they are unnecessary.

[4 marks] Total [30 marks]

8. (a) (i)
$$\begin{pmatrix} a & b \\ 2 & 1 \end{pmatrix} - \begin{pmatrix} -12 & -15 \\ -12 & -15 \end{pmatrix}$$

$$\begin{pmatrix} a & c \\ c & d \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -6 & -3 \\ -6 & -3 \end{pmatrix}$$
(M1)
$$\Rightarrow 2a = -12; a + 3b = -15; 2c = -6; c + 3d = -3$$
(M1)

$$\Rightarrow 2a = -12, a + 5b = -13, 2c = -6, c + 5a = -5$$
(M1)
$$T = \begin{pmatrix} -6 & -3 \\ -3 & 0 \end{pmatrix}$$
(C2)

$$T = \begin{pmatrix} -12 & -15 \\ -6 & -3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}^{-1}$$
(M1)

$$= \begin{pmatrix} -12 & -15 \\ -6 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{1}{6} \\ 0 & \frac{1}{3} \end{pmatrix}$$

$$T = \begin{pmatrix} -6 & -3 \\ -3 & 0 \end{pmatrix}$$
(M1)
(C2)

Note: Award (M1) for any correct method. Award (C3) for the correct answer. [4 marks]

(ii) C' is the image of C under T. Hence, C' has coordinates (3, 3).

(b) (i) $V\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1-6x-3y\\-1-3x\end{pmatrix}$ x = 1 - 6x - 3y(M1)

$$y = -1 - 3x$$
 (M1)
 $x = -2; y = 5$ (A1)(A1)

OR

 $x = -2 \ y = 5$

(G3) [4 marks]

(A1) [1 mark]

(ii) Areas under V are multiplied by $\left| \det \begin{pmatrix} -6 & -3 \\ -3 & 0 \end{pmatrix} \right| = 9$ (M1)

Note: Translation by the vector (1, -1) does not change areas.

Hence, the image of D has area 9a. (A1)

(iii) L = E S F

$$\begin{pmatrix} -6 & -3 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

$$E = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}; S = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}; F = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$
(M1)
(A1)(A1)(A1)

Notes: Award (A1) for each correct matrix irrespective of method. Award up to (M1) for method.

[4 marks] continued...

Question 8 continued

(c)	(i)	The image of (x, y) under W is $(0, y)$.	(A1) [1 mark]
	(ii)	The image of the triangle ABC under W is the line segment joining $(0, 0)$ to $(0, 3)$.	(A2)
	Not	te: If answer incorrect, award up to (M1) for method.	
			[2 marks]

(iii) QR is the rotation through $60^{\circ} - 45^{\circ} = 15^{\circ}$ counterclockwise. (M1)(M1) Hence, its matrix is

$$\begin{pmatrix} \cos 15^{\circ} & -\sin 15^{\circ} \\ \sin 15^{\circ} & \cos 15^{\circ} \end{pmatrix}$$
(M2)
$$(0.966 & -0.259)$$

$$= \begin{pmatrix} 0.900 & -0.239 \\ 0.259 & 0.966 \end{pmatrix}$$
(AG)

OR

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{(\sqrt{2}+\sqrt{6})}{4} & \frac{(\sqrt{2}-\sqrt{6})}{4} \\ \frac{(\sqrt{6}-\sqrt{2})}{4} & \frac{(\sqrt{2}+\sqrt{6})}{4} \\ \frac{(\sqrt{2}+\sqrt{6})}{4} \\ \frac{(\sqrt{2}+\sqrt{6})}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 0.966 & -0.259 \\ 0.259 & 0.966 \end{pmatrix}$$

$$(AG)$$

[4 marks]

(iv)	$\det U = \det WQR = (\det W)(\det QR) = 0 \text{ since } \det (W) = 0.$	(M1)
	Since $\det U = 0$, U cannot be an isometry.	(R2)

OR

Since QR is an isometry (rotation about the origin) and W is not, their composition WQR = U is not an isometry. (R3)

OR

The distance between two points is not preserved.	(R3)
	[3 marks]

(v)
$$U\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0.259x + 0.966y \end{pmatrix}$$
 (M1)

$$QR\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix} 0.966x - 0.259y\\0.259x + 0.966y \end{pmatrix}$$
(M1)

hence,
$$U(x, y) = QR(x, y) \Leftrightarrow 0 = 0.966x - 0.259y$$
 (M2)

Answer: the line y = 3.73x, or $y = \tan 75^{\circ}x$, or 0.966x - 0.259y = 0 (A1)

[5 marks]

Total [30 marks]