

MARKSCHEME

November 2000

MATHEMATICAL STUDIES

Standard Level

Paper 2

1. (a) (i)

(A3)

Note: Award (A1) for a correct diagram (labelled), (A1) for x in the correct position, (A1) for either (48-x) or (44-x) correctly positioned.

[3 marks]

- (ii) 48 x + x + 44 x = 60 (or equivalent), allow **ft** from (i) (M1) $\Rightarrow x = 32$ (A1) [2 marks]
- (iii) The set of members who **did not** attend for **both** Drama and Sports (or equivalent) (A2)

[2 marks]

(iv)
$$P(D \text{ or } S) = \left[\frac{48 - 32}{60} + \frac{44 - 32}{60}\right]$$
 (M1)(M1)

Note: Award (*M1*) for either $\frac{48-32}{60}$ or $\frac{44-32}{60}$, (*M1*) for adding.

$$=\frac{28}{60} or \frac{7}{15} or \ 0.467 \ (3 \text{ s.f.}) \ or \ 46.7\% \ (3 \text{ s.f.})$$
(A1)

[3 marks]

(b) (i)
$$P(\text{Female and } (S \text{ or } D)) = \frac{20}{60}$$
 (M1)

$$=\frac{1}{3}or \ 0.333 \ (3 \text{ s.f.}) \ or \ 33.3\% \ (3 \text{ s.f.})$$
(A1)

[2 marks]

(ii) P(Male and both D and S) =
$$\left[\frac{32-8}{60}\right]$$
 (M1)

$$=\frac{2}{5}or\ 0.4\ or\ 40\%$$
 (A1)

[2 marks]

2. (i) (a) (i)
$$p \Rightarrow q$$
 (A1)
(ii) $r \lor \neg q$ (A1)
[2 marks]

(b)
$$p \Rightarrow q, r \lor \neg q$$

 $\neg r$ (A1)
Therefore, $\neg p$ (A1)

OR

$$\{(p \Rightarrow q) \land (r \lor \neg q) \land \neg r\} \Rightarrow \neg p \tag{A2}$$

[2 marks]

(c)

(C)			$6\downarrow$		$4\downarrow$	1↓	$2\downarrow$	3↓	$5\downarrow$	$7\downarrow$
р	q	r	$\neg p$	$\neg q$	$\neg r$	$p \Rightarrow q$	$r \lor \neg q$	1 ^ 2	3 ^ 4	$5 \Rightarrow 6$
Т	Т	Т	F	F	F	Т	Т	Т	F	Т
Т	Т	F	F	F	Т	Т	F	F	F	Т
Т	F	Т	F	Т	F	F	Т	F	F	Т
Т	F	F	F	Т	Т	F	Т	F	F	Т
F	Т	Т	Т	F	F	Т	Т	Т	F	Т
F	Т	F	Т	F	Т	Т	F	F	F	Т
F	F	Т	Т	Т	F	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	Т	Т	Т	Т	Т

Note: Award (A1) for each correct bold column.

From the table, the argument in part (b) is valid.

(R1)

(A5)

[6 marks]

(ii)	(a)	$y = x^2 + 3$	(1	(A1)

(b)
$$y = (x-2)^2$$
 (A1)

(c)
$$y = (x-2)^2 + 3$$
 (A2)

[4 marks]

3. (i) (a)

(b)
$$P(J_1 \cap W) = \left(\frac{1}{2}\right) \left(\frac{3}{5}\right), P(J_2 \cap W) = \left(\frac{1}{2}\right) \left(\frac{1}{3}\right)$$
 (M1)

Note: Award (M1) for either correct.

$$P(W) = \frac{3}{10} + \frac{1}{6}$$
(M1)

$$=\frac{7}{15}or\ 0.467\ (3\ \text{s.f.})\ or\ 46.7\%\ (3\ \text{s.f.})$$
(A1)

[3 marks]

(c)
$$P(J_1 \cap W \cap W) = \left(\frac{1}{2}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right), \quad P(J_2 \cap W \cap W) = 0$$
 (M1)

$$P(W \cap W) = \frac{3}{20} + 0$$

= $\frac{3}{20}$ or 0.15 or 15% (A1)

[2 marks]

continued...

Question 3(ii) continued

(ii) (a)

Time less than (mins)	cumulative frequency
10.5	0
15.5	7
20.5	20
25.5	45
30.5	73
35.5	93
40.5	100

(A3)

Note: Award (A1) for the correct scale and labelling. Award (A2) for plotting 6 or 7 points correctly, (A1) for plotting 4 or 5 points correctly.

[3 marks]

- (c) (i) 12 ± 1 students (allow ft)
 - (ii) 31 ± 0.5 minutes (allow ft)

(A1)

(A1)

[2 marks]

N00/530/S(2)M

- 11 -

5. (i) (a)
$$AC = 19 - 11 = 8$$

 $6^2 = 5^2 + 8^2 - 2(5)(8) \cos BAC$
 $\Rightarrow BAC = 48.5^\circ (3 \text{ s.f.})$

[3 marks]

(M1) (M1) (A1)

(b) Area
$$= \left(\frac{1}{2}\right)(5)(8)\sin B\hat{A}C$$
 (M1)
= 15.0 cm² (3 s.f.) (allow **ft** from part (a)) (A1)

(ii) (a) (i) AB = 5(A1)

(ii)
$$k = 6$$
 (A1)

(iii) Area of triangle ABC =
$$\frac{1}{2}(5)(5)$$
 (M1)

(b) (i)
$$V = \frac{1}{3} (\text{Area base}) \times \text{height} = 40 \text{ units}^3$$

 $\Rightarrow \frac{1}{3} (25) \times \text{height} = 40$ (M1)
Height = 3×40 ÷ 25 (**ft** from (b)(ii))

$$=4.8$$
 (A1)

(ii)
$$x = \frac{2-3}{2} = -0.5$$
 (A1)

$$y = \frac{1+6}{2} = 3.5$$
 (A1)

$$z = 3 + 4.8 = 7.8 \tag{A1}$$

OR

$$E(-0.5, 3.5, 7.8)$$
 (A3)

[5 marks]

(A1)

6. (i) (a) (i) True

(b) (i)
$$A^T = \begin{pmatrix} a & 2a \\ 0 & -\frac{1}{a} \end{pmatrix}$$
 (A1)

(ii) $\det(A) = -1$ (A1)

(iii)
$$B = \begin{pmatrix} \frac{1}{a} & 0\\ 2a & -a \end{pmatrix}$$
 (M1)(A1)

(iv)
$$3A = \begin{pmatrix} 3a & 0\\ 6a & -\frac{3}{a} \end{pmatrix}$$
 (or equivalent) (M1)

$$3A - A^{T} = \begin{pmatrix} 2a & -2a \\ 6a & -\frac{2}{a} \end{pmatrix}$$
(M1)

$$=2a\begin{pmatrix}1 & -1\\3 & -\frac{1}{a^2}\end{pmatrix}$$
(AG)

(v)
$$M = N \Rightarrow x + 2y = 10,$$

 $3x - y = 2,$
 $xy = 8$ (M2)

Note: Award (M2) for any 2 correct equations.

Therefore,
$$x = 2, y = 4$$
 (A1)

[10 marks]

Question 6 continued

(ii) (a)

(M3)

Note:	AC = 114 is given. Award (M3) for 11 or 12 correct distances,	
	(M2) for 9 or 10 correct, (M1) for 7 or 8 correct, (M0) for 6 or less correct.	

[3 marks]

- (b) (i) $A \to B \to F$ (M2)
 - (ii) 125 km (A1)
 - (iii) Assuming an average speed of 40 km/h then route $A \rightarrow B \rightarrow F$ takes $\frac{125}{40} = 3.125$ hours. With delay $A \rightarrow B \rightarrow F$ takes 4.125 hours. (A1) The next shortest route is $A \rightarrow C \rightarrow F = 169$ km. This takes $\frac{169}{40} = 4.225$ hours. ABF is still the quickest route. (R1)

^{[5} marks]

(iii) (a)		CHA	ARLES (C)		
		BLACK 5	RED 3	RED 1	
	BLACK 5	(R, C)	(R, C)	(R, C)	
ROBERT (R)		(0, 0)	(0, 2)	(0, 4)	(A3)
KODEKI (K)	RED 5	(R, C)	(R, C)	(R, C)	
		(0, 0)	(2, 0)	(4, 0)	
					[3 marks]
(b) (i)	Play Red 5				(A1)
(ii)	Play Black 5				(A1)
(iii)	0 (zero) <i>or</i> no	win			(A1)
					[3 marks]
(c) Yes					(A1)
Beca	use the result of	both players' c	ptimal strategy	is zero (no win)	(R1)
					[2 marks]

- 14 -

7. (i) (a)
$$P(X > 6.54) = \frac{1}{20} = 0.05$$
 (M1)

$$\Rightarrow P\left(Z > \frac{0.04}{\sigma}\right) = 0.05 \tag{M1}$$

$$\Rightarrow 1 - \Phi\left(\frac{0.04}{\sigma}\right) = 0.05 \tag{M1}$$

$$\Rightarrow \frac{0.04}{\sigma} = 1.64, \quad \text{therefore } \sigma = 0.0244 \ (3 \text{ s.f.}) \tag{M1}(A1)$$

(Accept
$$\sigma = 0.0243$$
 from 1.645, or $\sigma = 0.0242$ from 1.65.)

[5 marks]

(b) (i)
$$P(X > 6.54) = \frac{1}{15} = 0.0667$$
 (3 s.f.) (M1)

$$\Rightarrow P\left(Z > \frac{0.04}{\sigma}\right) = 0.0667 \tag{M1}$$

$$\Rightarrow 1 - \Phi\left(\frac{0.04}{\sigma}\right) = 0.0667$$
$$\Rightarrow \frac{0.04}{\sigma} = 1.50, \quad \Rightarrow \sigma = 0.0267 (3 \text{ s.f.}) \tag{M1}(A1)$$

[4 marks]

(ii)
$$X \approx N(6.50, 0.0267^2)$$
 (allow **ft** from part (i))
 $P(6.48 < X < 6.53) = P\left(\frac{6.48 - 6.50}{0.0267} < Z < \frac{6.53 - 6.50}{0.0267}\right)$
 $= P(-0.75 < Z < 1.12)$
(M1)

$$=\Phi(0.75)+\Phi(1.12)-1 = 0.642 (3 \text{ s.f.}).$$
 (M1)(A1)

Therefore, expected number is $(0.642 \times 1000) = 642$ (A1)

OR

$$P(6.48 < X < 6.53) = 0.642$$
(M0)(G1)Expected number is 642(A1)

[4 marks]

continued...

Question 7 continued

(ii)

(a)		Billiards	Snooker	Darts	Totals				
	Male Expected	32.9	16.4	13.7	63				
	Female Expected	27.1	13.6	11.3	52				
	Ехрессей	60	30	25	115	(A3)			
Note:	Award (A. (A1) for 2		et expected va	ilues (bold),	(A2) for 4 correct,				
I	H ₀ : Choice o	f game is ind	ependent of g	ender		(A1)			
ł	H ₁ : Choice of	of game is not	independent	of gender		(A1)			
Ε	Degree of free	edom: (3-1)((2-1) = 2			(A1)			
2	$\chi^2 = \sum \frac{(f_o - f_o)}{f}$	$\frac{(f_e)^2}{f_e} = \frac{(39-32)^2}{32}$	$\frac{32.9)^2}{2.9} + \dots$			(M2)			
	= 7.77 (3	s.f.). [or 7.79	from GDC]			(A1)			
В	But $\chi^2_{5\%}(2) = 5.99$ (from table)								
2	$\chi^2 = 7.77 > \chi$	$V_{5\%}^2(2)$ and we	e do reject H)		(A1)(R1)			
E	Hence: Choice	e of game is c	lependent on	gender.		(A1) [13 marks]			
(b) (i	i) The free	quency for m	ales choosing	Billiards is	less than 5	(R1)			
(i	ii) Snooke	r – In order to	preserve the	diversity of	games	(R1)			
	OR Darts –	it has the nex	t smallest nu	mber of men	nbers	(R1) [2 marks]			
(c) (i	i) $\frac{31}{122}$ or	0.254 (3 s.f.)				(A1)			
(i	ii) $\frac{72}{122}$ or	0.590 (3 s.f.)				(A1)			
,	122					[2 marks]			

Total [30 marks]

8. (i) (a)
$$f'(x) = 3x^2 - 6x + 3$$
 (42)
[2 marks]
(b) $\frac{x}{|f(x)| - 1/2| - 3|} 0 \frac{1}{|1| - 2| - 3|} \frac{3}{|9|} \frac{1}{|1| 2|}$ (43)
(c) $\frac{1}{|f(x)| - 1/2|} \frac{1}{|2|} \frac{1}{|3|} \frac{1}{|4|} \frac{1}{|$

(iii) (a)
$$H + h = 30(T + t) - 5(T + t)^2$$
 (42)
Note: Award (A1) for $30(T + t)$, (A1) for $-5(T + t)^2$
(b) (i) $h = (30T + 30t - 5T^2 - 10Tt - 5t^2) - (30T - 5T^2)$ (M1)
 $h = 30t - 10Tt - 5t^2$ (A1)
(ii) $\lim_{x \to 0} \frac{h}{t} = 30 - 10T$ (allow ft from part (a)) (M1)(A1)
[4 marks]
(c) (i) $\frac{dH}{dT} = \lim_{t \to 0} \frac{h}{t}$
represents the velocity of the object (A1)

(ii) When
$$T = 6$$
, $\frac{dH}{dT} = 30 - 60 = -30$ (A1)

(iii) The negative result means that the object is moving at 30m/s in the opposite direction to which it started, that is, downwards. (A1)

[3 marks]

(d) (i) At maximum height
$$\frac{dH}{dT} = 0$$
 (M1)

$$\Rightarrow T = 3 \text{ (ft from previous parts)}$$
(A1)

(ii) Maximum height =
$$30(3) - 5(3^2) = 90 - 45$$
 (M1)
= 45 metres (A1)

[4 marks]

(e) Initial velocity occurs when T = 0 *i.e.* when $\frac{dH}{dT} = 30 - 10(0)$ (M1) $= 30 \text{ ms}^{-1}$ (A1) [2 marks] Total [30 marks]