MARKSCHEME

November 2000

MATHEMATICAL STUDIES

Standard Level

Paper 2

1. (a) (i)

Note: Award (A1) for a correct diagram (labelled), (A1) for x in the correct position, (A1) for either $(48-x)$ or $(44-x)$ correctly positioned.
(ii) $48-x+x+44-x=60$ (or equivalent), allow ft from (i)
$\Rightarrow x=32$
(iii) The set of members who did not attend for both Drama and Sports (or equivalent)
(iv) $\mathrm{P}(D$ or $S)=\left[\frac{48-32}{60}+\frac{44-32}{60}\right]$
(M1)(M1)

Note: Award (M1) for either $\frac{48-32}{60}$ or $\frac{44-32}{60}$, (M1) for adding.

$$
=\frac{28}{60} \text { or } \frac{7}{15} \text { or } 0.467 \text { (3 s.f.) or } 46.7 \% \text { (3 s.f.) }
$$

(A1)
(b) (i) $\quad \mathrm{P}($ Female and $(S$ or $D))=\frac{20}{60}$
(M1)

$$
\begin{equation*}
=\frac{1}{3} \text { or } 0.333 \text { (3 s.f.) or } 33.3 \% \text { (3 s.f.) } \tag{A1}
\end{equation*}
$$

(ii) $\quad \mathrm{P}($ Male and both D and $S)=\left[\frac{32-8}{60}\right]$

$$
=\frac{2}{5} \text { or } 0.4 \text { or } 40 \%
$$

2. (i) (a) (i) $p \Rightarrow q$
(ii) $r \vee \neg q$
(b) $\quad p \Rightarrow q, r \vee \neg q$

Therefore, $\neg p$
OR

$$
\{(p \Rightarrow q) \wedge(r \vee \neg q) \wedge \neg r\} \Rightarrow \neg p
$$

(c)

	$6 \downarrow$									$4 \downarrow$	$1 \downarrow$
p	q	r	$\neg p$	$\neg q$	$\neg r$	$p \Rightarrow q$	$r \vee \neg q$	$1 \wedge 2$	$3 \wedge 4$	$5 \Rightarrow 6$	
T	T	T	F	F	F	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	
T	T	F	F	F	T	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	
T	F	T	F	T	F	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	
T	F	F	F	T	T	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	
F	T	T	T	F	F	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	
F	T	F	T	F	T	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	
F	F	T	T	T	F	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	
F	F	F	T	T	T	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	

Note: Award (A1) for each correct bold column.

From the table, the argument in part (b) is valid.
(ii) (a) $y=x^{2}+3$
(b) $y=(x-2)^{2}$
(c) $y=(x-2)^{2}+3$
3. (i) (a)

(b) $\mathrm{P}\left(J_{1} \cap W\right)=\left(\frac{1}{2}\right)\left(\frac{3}{5}\right), \mathrm{P}\left(J_{2} \cap W\right)=\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)$

Note: Award (M1) for either correct.

$$
\begin{align*}
\mathrm{P}(W) & =\frac{3}{10}+\frac{1}{6} \tag{M1}\\
& =\frac{7}{15} \text { or } 0.467 \text { (3 s.f.) or } 46.7 \%(3 \text { s.f. }) \tag{A1}
\end{align*}
$$

(c) $\mathrm{P}\left(J_{1} \cap W \cap W\right)=\left(\frac{1}{2}\right)\left(\frac{3}{5}\right)\left(\frac{2}{4}\right), \mathrm{P}\left(J_{2} \cap W \cap W\right)=0$

$$
\begin{equation*}
\mathrm{P}(W \cap W)=\frac{3}{20}+0 \tag{M1}
\end{equation*}
$$

$$
=\frac{3}{20} \text { or } 0.15 \text { or } 15 \%
$$

Question 3(ii) continued

(ii) (a)

Time less than (mins)	cumulative frequency
10.5	0
15.5	7
20.5	20
25.5	45
30.5	73
35.5	93
40.5	100

Note: Award (A1) for each correct column.
(b)

Note: Award (A1) for the correct scale and labelling.
Award (A2) for plotting 6 or 7 points correctly, (A1) for plotting 4 or 5 points correctly.
[3 marks]
(c) (i) 12 ± 1 students (allow $\mathbf{f t})$
(ii) 31 ± 0.5 minutes (allow ft)
4. (a) $x+y \leq 15$
$x \geq 6$
$y \geq 3$
(b) (i)

Note: Award (A1) for each correct line, and (A1) for R. Allow ft from part (a).

[4 marks]

(c) (i) No, because $10+6>15$
(ii) No, because $x=3<6$
(iii) Yes, because $x=8>6, y=6>3$ and $8+6<15$
(d) (i) $\quad I=2.5 x+3.5 y$
(ii) Vertices $(6,9): \sim 6(2.5)+9(3.5)=46.50$
$(6,3): \sim 6(2.5)+3(3.5)=25.50$
$(12,3): \sim 12(2.5)+3(3.5)=40.50$

Hence maximum income $=£ 46.50$ (allow ft from graph.)
6 hours mowing lawns and 9 hours cleaning cars or $(6,9)$
5. (i)

$$
\text { (a) } \begin{aligned}
& \mathrm{AC}=19-11=8 \\
& 6^{2}=5^{2}+8^{2}-2(5)(8) \cos \mathrm{BAC} \\
& \Rightarrow \mathrm{BAC}=48.5^{\circ}(3 \text { s.f. })
\end{aligned}
$$

(b) Area $=\left(\frac{1}{2}\right)(5)(8) \sin \mathrm{BA} \mathrm{C}$

$$
\begin{equation*}
=15.0 \mathrm{~cm}^{2} \text { (3 s.f.) (allow } \mathbf{f t} \text { from part (a)) } \tag{M1}
\end{equation*}
$$

(ii) (a) (i) $\mathrm{AB}=5$
(ii) $k=6$
(iii) Area of triangle $\mathrm{ABC}=\frac{1}{2}(5)(5)$

$$
=12.5 \text { units }^{2}
$$

(b) (i) $\quad V=\frac{1}{3}$ (Area base) \times height $=40$ units 3

$$
\begin{equation*}
\Rightarrow \frac{1}{3}(25) \times \text { height }=40 \tag{M1}
\end{equation*}
$$

Height $=3 \times 40 \div 25$ (ft from (b)(ii)) $=4.8$
(ii) $x=\frac{2-3}{2}=-0.5$
$y=\frac{1+6}{2}=3.5$

OR
$\mathrm{E}(-0.5,3.5,7.8)$
6. (i) (a) (i) True
(ii) False
(iii) False
(iv) True
(b) (i) $\quad A^{T}=\left(\begin{array}{rr}a & 2 a \\ 0 & -\frac{1}{a}\end{array}\right)$
(ii) $\operatorname{det}(A)=-1$
(iii) $\quad B=\left(\begin{array}{cc}\frac{1}{a} & 0 \\ 2 a & -a\end{array}\right)$
(iv) $3 A=\left(\begin{array}{cc}3 a & 0 \\ 6 a & -\frac{3}{a}\end{array}\right)$ (or equivalent)

$$
\begin{align*}
3 A-A^{T} & =\left(\begin{array}{cc}
2 a & -2 a \\
6 a & -\frac{2}{a}
\end{array}\right) \\
& =2 a\left(\begin{array}{rr}
1 & -1 \\
3 & -\frac{1}{a^{2}}
\end{array}\right) \tag{AG}
\end{align*}
$$

(v) $\quad M=N \Rightarrow x+2 y=10$,

$$
\begin{gather*}
3 x-y=2 \\
x y=8 \tag{M2}
\end{gather*}
$$

Note: Award (M2) for any 2 correct equations.

Therefore, $x=2, y=4$

Question 6 continued

(ii) (a)

(M3)

Note: $\mathrm{AC}=114$ is given. Award (M3) for 11 or 12 correct distances, (M2) for 9 or 10 correct, (M1) for 7 or 8 correct, (M0) for 6 or less correct.
(b) (i) $\quad \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{F}$
(M2)
(ii) 125 km
(iii) Assuming an average speed of $40 \mathrm{~km} / \mathrm{h}$ then route $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{F}$ takes
$\frac{125}{40}=3.125$ hours. With delay $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{F}$ takes 4.125 hours.
The next shortest route is $\mathrm{A} \rightarrow \mathrm{C} \rightarrow \mathrm{F}=169 \mathrm{~km}$.
This takes $\frac{169}{40}=4.225$ hours. ABF is still the quickest route.
(iii) (a)

(a)				
		BLACK 5	RED 3	RED 1
ROBERT (R)	BLACK 5	(R, C)	(R, C)	(R, C)
		$(0,0)$	$(0,2)$	$(0,4)$
	RED 5	(R, C)	(R, C)	(R, C)
		$(0,0)$	$(2,0)$	$(4,0)$

(b) (i) Play Red 5
(ii) Play Black 5
(iii) 0 (zero) or no win
(c) Yes \quad Because the result of both players' optimal strategy is zero (no win)
7. (i) (a) $\mathrm{P}(X>6.54)=\frac{1}{20}=0.05$
(M1)
$\Rightarrow \mathrm{P}\left(Z>\frac{0.04}{\sigma}\right)=0.05$
$\Rightarrow 1-\Phi\left(\frac{0.04}{\sigma}\right)=0.05$
$\Rightarrow \frac{0.04}{\sigma}=1.64, \quad$ therefore $\sigma=0.0244$ (3 s.f.)
(M1)(A1)
(Accept $\sigma=0.0243$ from 1.645, or $\sigma=0.0242$ from 1.65.)
(b) (i) $\quad \mathrm{P}(X>6.54)=\frac{1}{15}=0.0667$ (3 s.f.)

$$
\begin{align*}
& \Rightarrow \mathrm{P}\left(Z>\frac{0.04}{\sigma}\right)=0.0667 \tag{M1}\\
& \Rightarrow 1-\Phi\left(\frac{0.04}{\sigma}\right)=0.0667 \\
& \Rightarrow \frac{0.04}{\sigma}=1.50, \quad \Rightarrow \sigma=0.0267 \text { (3 s.f.) }
\end{align*}
$$

(ii) $\quad X \approx \mathrm{~N}\left(6.50,0.0267^{2}\right)$ (allow $\mathbf{f t}$ from part (i))

$$
\begin{align*}
\mathrm{P}(6.48<X<6.53) & =\mathrm{P}\left(\frac{6.48-6.50}{0.0267}<Z<\frac{6.53-6.50}{0.0267}\right) \tag{M1}\\
& =\mathrm{P}(-0.75<Z<1.12) \\
& =\Phi(0.75)+\Phi(1.12)-1=0.642(3 \text { s.f. })
\end{align*}
$$

Therefore, expected number is $(0.642 \times 1000)=642$
OR
$\mathrm{P}(6.48<X<6.53)=0.642$
Expected number is 642

[4 marks]

continued...

Question 7 continued

(ii) (a)

	Billiards	Snooker	Darts	Totals
Male Expected	$\mathbf{3 2 . 9}$	$\mathbf{1 6 . 4}$	$\mathbf{1 3 . 7}$	63
Female Expected	$\mathbf{2 7 . 1}$	$\mathbf{1 3 . 6}$	$\mathbf{1 1 . 3}$	52
	60	30	25	115

(A3)

Note: Award (A3) for 6 correct expected values (bold), (A2) for 4 correct, (A1) for 2 correct.
H_{0} : Choice of game is independent of gender
H_{1} : Choice of game is not independent of gender

Degree of freedom: $(3-1)(2-1)=2$

$$
\begin{align*}
\chi^{2} & =\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=\frac{(39-32.9)^{2}}{32.9}+\ldots . . \tag{M2}\\
& =7.77 \text { (3 s.f.). [or } 7.79 \text { from GDC] }
\end{align*}
$$

But $\chi_{5 \%}^{2}(2)=5.99$ (from table)
(M1)

$$
\chi^{2}=7.77>\chi_{5 \%}^{2}(2) \text { and we do reject } \mathrm{H}_{0}
$$

Hence: Choice of game is dependent on gender.
(A1)
(b) (i) The frequency for males choosing Billiards is less than 5
(ii) Snooker - In order to preserve the diversity of games

OR

Darts - it has the next smallest number of members
(R1)
(c) (i) $\frac{31}{122}$ or 0.254 (3 s.f.)
(ii) $\frac{72}{122}$ or 0.590 (3 s.f.)
8. (i)
(a) $\quad f^{\prime}(x)=3 x^{2}-6 x+3$
(A2)
[2 marks]
(A3)
[3 marks]

Note: The graph does not have to be on graph paper as long as it is reasonable.

[2 marks]

(d) See graph above
(A1) [1 mark]
(e) 12
8. (ii) (a) $a=2, b=20, c=9, d=8, e=32$

Note: Award (A2) for all 5 correct, (A1) for 3 or 4 correct, (A0) for 2 or less correct.
(b) $A=12 x-x^{2}$
(c)

$$
\begin{equation*}
\frac{\mathrm{d} A}{\mathrm{~d} x}=12-2 x \tag{A1}
\end{equation*}
$$

A is maximum when $12-2 x=0$

OR
length $=6 \mathrm{~m}$ and width $=6 \mathrm{~m}$

Question 8 continued

(iii) (a) $H+h=30(T+t)-5(T+t)^{2}$

Note: Award (A1) for $30(T+t),(\boldsymbol{A 1})$ for $-5(T+t)^{2}$
(b) (i) $\quad h=\left(30 T+30 t-5 T^{2}-10 T t-5 t^{2}\right)-\left(30 T-5 T^{2}\right)$
$h=30 t-10 T t-5 t^{2}$
(ii) $\lim _{x \rightarrow 0} \frac{h}{t}=30-10 T$ (allow ft from part (a))
(c) (i) $\frac{\mathrm{d} H}{\mathrm{~d} T}=\lim _{t \rightarrow 0} \frac{h}{t}$
represents the velocity of the object
(ii) When $T=6, \frac{\mathrm{~d} H}{\mathrm{~d} T}=30-60=-30$
(iii) The negative result means that the object is moving at $30 \mathrm{~m} / \mathrm{s}$ in the
opposite direction to which it started, that is, downwards.
(A1) [3 marks]
(d) (i) At maximum height $\frac{\mathrm{d} H}{\mathrm{~d} T}=0$

$$
\begin{equation*}
\Rightarrow T=3 \text { (ft from previous parts) } \tag{M1}
\end{equation*}
$$

(ii) Maximum height $=30(3)-5\left(3^{2}\right)=90-45$

$$
=45 \text { metres }
$$

(e) Initial velocity occurs when $T=0$

$$
\text { i.e. } \text { when } \begin{aligned}
\frac{\mathrm{d} H}{\mathrm{~d} T} & =30-10(0) \\
& =30 \mathrm{~ms}^{-1}
\end{aligned}
$$

[2 marks]

