MARKSCHEME

November 2000

MATHEMATICAL STUDIES

Standard Level

Paper 1

1. (a) 2.79×10^{-6}
(M1)(A1)
(b) 1.024×10^{-2} (accept 1.02×10^{-2})
(M1)(A1)
Total [4 marks]
2. (a) $A=2(8 x)+2 x(10+2 x)$ or $2(10 x)+2 x(8+2 x)$ or $(10+2 x)(8+2 x)-80$
(M1)
$=4 x(x+9)$ (or equivalent)
(A1)
(b) $\quad A=4 x(x+9)=208$ (follow through from part (a))
(M1)
$\Rightarrow x=4(o r$ Width $=4)$
3. (a) $X(1.005)^{12}$
(b) $\quad X(1.005)^{12}=X\left(1+\frac{r}{100}\right)$
(M1)

Note: Award (M1) for equating follow through from (a).

$$
r=100(1.0617)-100 \text { (or equivalent) }
$$

Note: Award (M1) for isolating r correctly.
Rate $=6.17 \%$
(A1)
Total [4 marks]
4. (a) 0.75×0.82
(M1)
$=0.615\left(\right.$ accept 61.5% or $\left.\frac{123}{200}\right)$
(b) $\begin{aligned} & 0.25 \times 0.18 \\ & =0.045\left(\text { accept } 4.5 \% \text { or } \frac{9}{200}\right)\end{aligned}$
5. (a) Interval 11-15
(b) Mid-intervals 3, 8, 13, $18 \ldots$

Note: Award (M1) for all correct numbers.

$$
\begin{equation*}
\sum x f=48+224+338+\ldots \tag{M1}
\end{equation*}
$$

Note: Award (M1) for attempt to obtain sum.

$$
\begin{equation*}
\text { Mean }=13 \tag{A1}
\end{equation*}
$$

6. $4^{\text {th }}$ term $=a+3 d$
$8^{\text {th }}$ term $=a+7 d$
$20^{\text {th }}$ term $=a+19 d$
(M2)
Note: Award (M1) for each correct answer up to a maximum of [2 marks].
$a+7 d=2(a+3 d)$
$a+19 d=4000$

Note: Award (M1) for any one correct equation.
$d=200$
(A1)
Total [4 marks]
7. (a) $y=2 x$
(b) $y=2 x+8$ (follow through from part (a))
(c) $\quad 2 x+8=0$ (or other method)
$(-4,0)$ (follow through from part (b))
(A1)

Total [4 marks]

8. (a) $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OC}}$
(M1)

$$
\begin{aligned}
& =-3 p+4(3 q) \\
& =12 \boldsymbol{q}-3 p
\end{aligned}
$$

(b) $\quad \overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AN}}$

$$
\begin{align*}
& =3 p+\frac{1}{3} \overrightarrow{\mathrm{AC}} \tag{M1}\\
& =3 \boldsymbol{p}+\frac{1}{3}(12 \boldsymbol{p}-3 \boldsymbol{q}) \\
& =2 \boldsymbol{p}+4 \boldsymbol{q}
\end{align*}
$$

(A1)
Total [4 marks]
9. (a) High positive or high or positive or good correlation etc.

Note: For (A1) accept any correct answer.
(b) Correct point $\mathrm{M}(29,31)$
(c) Suitable line which should pass through the candidate's M and have nearly as many crosses (plotted points) below it as above it.
(d) Accept only value (including non-itegers) obtained using candidate's line of best fit. (Follow through from part (c).)
10. $\mathrm{AC} \mathrm{D}=120^{\circ}$
(M1)
$\mathrm{AD}^{2}=3^{2}+4^{2}-2(3)(4) \cos 120^{\circ}$ or $\mathrm{AD}^{2}=3^{2}+7^{2}-2(3)(7) \cos 60^{\circ}$
(M1)
Note: Award (M1) for correct substitution only.

$$
\begin{align*}
\mathrm{AD} & =\sqrt{37} \tag{A1}\\
& =6.08 \mathrm{~cm}(2 \text { d.p. }) \tag{A1}
\end{align*}
$$

11. (a) $(p \vee \neg q)$
(A1)
(b) If you have understood this topic and will not be able to do this question, then you have not understood this topic.

Note: Award (A1) for each correct translation of $\neg q, \neg p$, and \Rightarrow. Maximum 3 marks.

Total [4 marks]

12. (a) \mathbb{R}^{+}
(A1)
(b) $\quad \mathrm{P}(0,1)$
(A1)
(c) Decreases towards 0 or $\rightarrow 0$
(A1)(A1)
Note: Award (A1) for 'Decrease', and (A1) for $\rightarrow 0$

Note: Marks awarded at examiner's discretion.
13. (a) $f: x \mapsto 3 x-2$
$x \in\{-1,0,1,2,3\}$
(b)

Note: \quad Award (A1) for the correct domain, (A1) for the correct range.
14. (a) (i) $q=1, r=2, s=7$
(A1)
Note: \quad Award (A1) for other sensible estimates of q, r and s
(ii) $p=3$
(A1)
Note: Follow through from (a) (i)
(b) Two decimal places (accept three significant figures).

Because two decimal places is given (accept reason related to chosen degree of accuracy).
Note: Award marks for correct reason only
15. $x \geq 0, y \geq 0$
(A1)(A1)
$x+y \leq 20,2 x+y \leq 32$ (A1)(A1)

Note: Award ($\boldsymbol{A 1} \mathbf{)}(\boldsymbol{A 0})$ for strict inequalities $x>0, y>0$, (A1)(A0) for strict inequalities $x+y<20,2 x+y<32$.

