

MARKSCHEME

November 2000

MATHEMATICAL METHODS

Standard Level

Paper 2

N00/520/S(2)M

2. (a)
$$t=2 \implies h=50-5(2^2)=50-20$$

= 30 (A1)
OR

$$h = 90 - 40(2) + 5(2^{2})$$

= 30 (A1)

(A4)

Note: Award (A1) for marked scales on each axis, (A1) for each section of the curve

[4 marks]

(c) (i)
$$\frac{dh}{dt} = \frac{d}{dt}(50 - 5t^2)$$

= 0 - 10t = -10t (A1)

(ii)
$$\frac{dh}{dt} = \frac{d}{dt}(90 - 40t + 5t^2)$$
$$= 0 - 40 + 10t = -40 + 10t$$
(A1)

[2 marks]

(d) When
$$t = 2$$
 (i) $\frac{dh}{dt} = -10(2)$ or $\frac{dh}{dt} = -40 + 10 \times 2$ (M1)
= -20 = -20 (A1)

[2 marks]

(e)
$$\frac{dh}{dt} = 0 \Rightarrow -10t = 0 (0 \le t \le 2)$$
 or $-40 + 10t = 0 (2 \le t \le 5)$ (M1)
 $t = 0$ or $t = 4$ (A1)(A1)

[3 marks]

(f) When
$$t = 4$$
 (M1)
 $h = 90 - 40(4) + 5(4^2)$ (M1)

$$=90-160+80$$

=10 (A1)

(AI)

[3 marks]

Total [15 marks]

	9	1							
			ų.	1, 0.55)					
			MM	\mathcal{N}			- - - -		
(c) (i			AL/P				-		
				1///0.3	, 0)	x			
				, , ,			-		
					1				
					1/2	-			
		•			• (,-1.66)			
							_		
Notes	The sketo the point Award (2	ch does no s (0, 0), (1 41) for the	t need to be .1, 0.55), (1 correct sha	on graph j .57, 0) and pe.	paper. 1 2, –1.6	It shoul 66) shou	d have the	e correct s cated in s	shape, and some way.
Notes	The sketo the point Award (2 Award (2	ch does no s (0, 0), (1 11) for the 12) for 3 o	t need to be .1, 0.55), (1 correct sha r 4 correctly	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul 66) shou <i>(A1)</i> fo	d have the ild be indi or 1 or 2 p	e correct s icated in s oints.	shape, and some way.
Notes	 The sketo the point Award (2 Award (2 Approx positive 	ch does no s (0, 0), (1 11) for the 12) for 3 o imate posi	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul 66) shou <i>(A1)</i> fo	d have the ild be indi or 1 or 2 p	e correct s icated in s oints.	shape, and some way.
Notes (ii	The sketo the point Award (/ Award (/) Approx positive maximu	ch does no s (0, 0), (1 41) for the 42) for 3 o imate posi e x-intercep im point (1	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55)	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi or 1 or 2 p	e correct s icated in s oints.	shape, and some way.
Notes (ii	: The sketo the point Award (A Award (A) Approx positive maximu end point	ch does no s (0, 0), (1 41) for the 42) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul 6) shou <i>(A1)</i> fo	d have the ild be indi	e correct s cated in s oints.	shape, and some way.
Notes (ii	: The skete the point Award (Award () Approx positive maximu end poin	ch does no s (0, 0), (1 11) for the 12) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul 6) shou <i>(A1)</i> fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (All [7 m
(ii	The sketa the point Award (A Award (A) Approx positive maximu end point $2^{2} \cos r = 0$	ch does no s (0, 0), (1 41) for the 42) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$	t need to be .1, 0.55), (1 correct shat r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60 \Rightarrow cos r =	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul 66) shou <i>(A1)</i> fo	d have the ild be indi	e correct s located in s oints.	shape, and some way. (Al [7 m
(ii) (b) x	: The sketa the point Award (2 Award (2) Approx positive maximu end point $2^{2}\cos x = 0$	ch does no s (0, 0), (1 41) for the 42) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) and (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (All [7 m
(ii) (b) x	: The sketa the point Award (2 Award (2 Award (2) Approx positive maximu end point $2^{2}\cos x = 0$	ch does no s (0, 0), (1 41) for the 42) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (All [7 m
(iii) (b) x	: The skete the point Award (2 Award (2 Award (2) Approx positive maximu end point $2^{2}\cos x = 0$	ch does no s (0, 0), (1 11) for the 12) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (Al [7 m
Notes (ii (b) x	: The sketa the point Award (A Award (A a) Approx positive maximu end point $2^{2} \cos x = 0$ Award (A	ch does no s (0, 0), (1 11) for the 12) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$ = 12) if answ	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$ wer correct.	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (A1 [7 m
Notes (ii (b) x	The sketa the point Award (2 Award (2 Award (2 Award point $^{2}\cos x = 0$ Award (2	ch does no s (0, 0), (1 11) for the 12) for 3 o imate posit e x-interception imate point (1 ints (0, 0) a $x \neq 0$ 12) if answe	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) and (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$ wer correct.	e on graph J .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s located in s oints.	shape, and some way. (A l [7 m
Notes (ii) (b) x (b) x (c) (i)	The sketa the point Award (2 Award (2 Award (2) Approx positive maximu end point $2^{2}\cos x = 0$ Award (2) see grap	ch does no s (0, 0), (1 41) for the 42) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$ = 42) if answe	t need to be .1, 0.55), (1 correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) and (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$ wer correct.	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (Al [7 m]
Notes (ii) (b) x (c) (i)	The sket the point Award (2 Award (2 Award (2 Award (2 Award point) $^{2}\cos x = 0$ Award (2 See grap	ch does no s (0, 0), (1 11) for the 12) for 3 o imate posi e x-intercep im point (1 nts (0, 0) a $x \neq 0$ = 12) if answer	t need to be .1, 0.55), (1) correct sha r 4 correctly tions are ot (1.57, 0) 1.1, 0.55) nd (2, -1.60 $\Rightarrow \cos x = \frac{\pi}{2}$ $\Rightarrow x = \frac{\pi}{2}$ ver correct.	e on graph j .57, 0) and pe. y indicated	paper. 1 2, –1.6 points,	It shoul (6) shou (<i>A1</i>) fo	d have the ild be indi	e correct s icated in s oints.	shape, and some way. (Al [7 m]

[3 marks]

Question 3 continued

OR

Integral =
$$\left[x^{2} \sin x + 2x \cos x - 2 \sin x\right]_{0}^{\pi/2}$$
 (M1)

$$= \left[\frac{\pi^2}{4}(1) + 2\left(\frac{\pi}{2}\right)(0) - 2(1)\right] - \left[0 + 0 - 0\right]$$
(M1)

$$=\frac{\pi^2}{4} - 2 \text{ (exact)} \quad \text{or } 0.467 \text{ (3 s.f.)}$$
 (A1)

[3 marks] Total [15 marks]

4. (a) (i)
$$r_1 = \begin{bmatrix} 16 \\ 12 \end{bmatrix} + t \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$

 $t = 0 \Rightarrow r_1 = \begin{bmatrix} 16 \\ 12 \end{bmatrix}$ (M1)
 $|r_1| = \sqrt{(16^2 + 12^2)} = 20$ (A1)

(ii) Velocity vector =
$$\begin{bmatrix} 12 \\ -5 \end{bmatrix}$$

 \Rightarrow speed = $\sqrt{(12^2 + (-5)^2)}$ (M1)
= 13 (A1)

(b)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \end{bmatrix} + t \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 5 \\ 12 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \end{bmatrix} \cdot \begin{bmatrix} 16 \\ 12 \end{bmatrix} + \begin{bmatrix} 5 \\ 12 \end{bmatrix} \cdot t \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$
(M1)
$$\Rightarrow 5x + 12y = 80 + 144$$
(A1)
$$5x + 12y = 224$$
(A1)(AG)

OR

$\frac{x-16}{12} = \frac{y-12}{5}$	(M1)
$\frac{12}{5x-80} = 144 - 12y$	(A1)
$\Leftrightarrow 5x + 12y = 224$	(A1)(AG)

OR

$$x = 16 + 12t, y = 12 - 5t \implies t = \frac{12 - y}{5}$$
(M1)

$$\Rightarrow x = 16 + 12 \binom{12 - y}{5}$$
(A1)

$$\Rightarrow x = 16 + 12 \left(\frac{12 - y}{5} \right)$$

$$\Rightarrow 5x = 80 + 144 - 12y$$

$$\Rightarrow 5x + 12y = 224$$
(A1)(AG)

[3 marks]

(c)
$$\mathbf{v}_1 = \begin{bmatrix} 12\\ -5 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2.5\\ 6 \end{bmatrix}$$
 (M1)
 $\mathbf{v}_1 \cdot \mathbf{v}_2 = \begin{bmatrix} 12\\ -5 \end{bmatrix} \cdot \begin{bmatrix} 2.5\\ 6 \end{bmatrix}$
 $= 30 - 30$ (A1)

$$\Rightarrow \mathbf{v}_1 \cdot \mathbf{v}_2 = 0 \tag{A1}$$
$$\Rightarrow \theta = 90^{\circ} \tag{A1}$$

[4 marks]

Question 4 continued

(d) (i)
$$\begin{bmatrix} x \\ y \end{bmatrix} \cdot \begin{bmatrix} 12 \\ -5 \end{bmatrix} = \begin{bmatrix} 23 \\ -5 \end{bmatrix} \cdot \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$
 (M1)
 $\Leftrightarrow 12x - 5y = 23 \times 12 + 25 = 301$ (A1)

$$\frac{x-23}{2.5} = \frac{y+5}{6}$$

$$\Rightarrow 6x - 138 = 2.5y + 12.5$$

$$\Rightarrow 12x - 276 = 5y + 25$$
(M1)

$$\Rightarrow 12x - 5y = 301 \tag{A1}$$

(ii)
$$5x + 12y = 224$$

 $12x - 5y = 301$ \Leftrightarrow $25x + 60y = 1120$
 $144x - 60y = 3612$ (M1)
 $169x = 4732$
 $x = 28, y = (12 \times 28 - 301) \div 5 = 7$

Note: Accept any correct method for solving simultaneous equations.

[5 marks]

(R1)

(e)
$$16+12t = 23+2.5t \implies 9.5t = 7$$
 (M1)

$$12-5t = -5+6t \qquad \Rightarrow 17 = 11t \tag{M1}$$

$$\frac{7}{9.5} \neq \frac{17}{11}$$
 (A1)

 \Rightarrow planes cannot be at the same place at the same time

OR

$$\mathbf{r}_{1} = \begin{bmatrix} 28\\7 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 28\\7 \end{bmatrix} = \begin{bmatrix} 16\\12 \end{bmatrix} + t \begin{bmatrix} 12\\-5 \end{bmatrix}$$
(M1)
$$\begin{bmatrix} 12t = 12 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} 12t = 12 \\ -5t = -5 \end{cases} \Leftrightarrow t = 1 \tag{A1}$$

When
$$t = 1$$
 $\mathbf{r}_2 = \begin{bmatrix} 23 \\ -5 \end{bmatrix} + \begin{bmatrix} 2.5 \\ 6 \end{bmatrix} = \begin{bmatrix} 25.5 \\ 1 \end{bmatrix} \neq \begin{bmatrix} 28 \\ 7 \end{bmatrix}$ (A1)(R1)

OR

$$\mathbf{r}_{2} = \begin{bmatrix} 28\\7 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 28\\7 \end{bmatrix} = \begin{bmatrix} 23\\-5 \end{bmatrix} + t \begin{bmatrix} 2.5\\6 \end{bmatrix}$$
(M1)
$$\Leftrightarrow t = 2$$
(A1)

[4 marks]

Total [20 marks]

_

	$V(5) = 10000 \times (0.933^5) = 7069.8$
(A1	= 7070 (3 s.f.)
[1 mark	
(M1	We want <i>t</i> when $V = 5000$
	$5000 = 10000 \times (0.933)^t$
(A)	$0.5 = 0.933^t$
(***	$\frac{\log(0.5)}{\log(0.933)} = t \left(\text{or } \frac{\ln(0.5)}{\ln(0.933)} \right)$
(41	9.9949 = t After 10 minutes 0 seconds to nearest second (or 600 seconds)
[17]	After 10 minutes 0 seconds, to hearest second (of 000 seconds).
[5 marks	
(M1	$0.05 = 0.933^t$
(M1)(A1	$\frac{\log(0.05)}{\log(0.05)} = t = 43.197$ minutes
().	$\log(0.933)$
(AG	$\approx 3/4$ hour
[3 marks	
(A1	(i) $10000 - 10000(0.933)^{0.001} = 0.693$
(M1	(ii) Initial flow rate $=\frac{\mathrm{d}V}{\mathrm{d}t}$ where $t=0$,
	$\frac{dV}{dt} = \frac{0.693}{693} = 693$
(4 1	dt = 0.001
(A1	-690(2 s.t.)
	OR
(G2	$\frac{\mathrm{d}V}{\mathrm{d}t} = 690$
[3 marks	
l [10 marks	Tota

(i)	(a)	$P(\text{speed} > 50) = 0.3 = 1 = \Phi\left(\frac{50 - \mu}{2}\right)$	·
(1)	(a)	$\Gamma(\operatorname{speed} > 50) = 0.5 = 1 - \Phi\left(\frac{10}{10}\right)$	
		Hence, $\frac{50-\mu}{10} = \Phi^{-1}(0.7)$	(1
		$\mu = 50 - 10\Phi^{-1}(0.7)$	(1
		= 44.75599 = 44.8 km/h (3 s.f.) (accept 44.7)	(4
			[3 ma
	(b)	H_1 : 'the mean speed has been reduced by the campaign'.	(
			[1 m
	(c)	One-tailed; because H_1 involves only "<".	(
			[2 ma
	(d)	For a one-tailed test at 5% level, critical region is	
		$Z < \mu_m - 1.64\sigma_m (\text{accept } -1.65\sigma_m)$	(.
		Now, $\mu_m = \mu = 44.75; \sigma_m = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{25}} = 2$ (allow ft)	(
		So test statistic is $44.751.64 \times 2 = 41.47$	(
		Now $41.3 < 41.47$ so reject H ₀ , yes.	(
			[4 ma
(ii)	(a)	Expected frequencies:	
		25.5 24.5	
		25.5 24.5	(
			[2 ma
	(b)	Observed, Yates corrected.	
		<u>30.5</u> <u>19.5</u> <u>20.5</u> <u>29.5</u>	(M1)
		20.3 29.3	[] ma
		$(f - f)^2$	[2 mu
	(c)	$\chi^2_{calc} = \sum \frac{(J_e - J_o)}{f_c}$	(M1)(.
		=4.00	
	Not	e: If Yates' correction is not used the answer should be 4.84. Award (M1)(A1) for 4.84 and apply ft to part (d)	
	1	in the part of the the the part (a).	

 (d)
 5% critical value is 3.84
 (A1)

 4.00 > 3.84
 (A1)

 So, results significant at 5% level.
 (A1)

[3 marks]

Question 6 continued

(iii)

	x	1	2	3	4]
	У	55	57	56	59	
(a)	$\overline{x} = 2.5,$	$\overline{y} =$	= 56.75			(G1)
	$s_x = 1.113$. = 1.12 (3	s.f. =	= 1.48 (3 s.f.)		(G1)
						[2 marks]
(b)	$\overline{xy} = \frac{1}{4}(55 +$	+2×57+3×	56+4×59)			(M1)(A1)
	=143.25	5				(AG)
	OR					
	$\sum xy = 573$	}				(G1)
	$\Rightarrow \overline{xy} = \frac{573}{4}$	3-=143.25				(G1)
						[2 marks]
(c)	$r = \frac{s_{xy}}{s_x s_y} = \frac{1}{s_x s_y}$	$\frac{(\overline{xy} - \overline{x} \overline{y})}{s_x \times s_y}$				(M1)
	=1	$\frac{43.25 - 2.5 \times 1}{1.118 \times 1.4}$	<56.75 179			(A1)
	= 0	$0.8315\approx 0.$	83			(AG)
						[2 marks]
(d)	$y - \overline{y} =$	$r\left(\frac{s_y}{s_x}\right)(x-1)$	\overline{x})			(M1)
	y - 56.75 =	= (0.8315)	$\left(\frac{1.479}{1.118}\right)$	c-2.5)		(M1)
	<i>y</i> =	1.1x + 54	(1.110)			(A1)(A1)

OR

y = 1.1x + 54 (G4)

[4 marks] Total [30 marks]

(A1)

[1 mark]

7. (a) From graph, period = 2π (i)

(b) Range =
$$\{y \mid -0.4 < y < 0.4\}$$
 (A1)
[1 mark]

(c) (i)
$$f'(x) = \frac{d}{dx} \{\cos x (\sin x)^2\}$$

= $\cos x (2\sin x \cos x) - \sin x (\sin x)^2$ or $-3\sin^3 x + 2\sin x$ (M1)(A1)(A1)

Award (M1) for using the product rule and (A1) for each part. Note:

(ii)
$$f'(x) = 0$$
 (M1)
 $\Rightarrow \sin x^{5} 2 \cos^{2} x - \sin^{2} x^{5} = 0$ or $\sin x^{5} 3 \cos^{2} x - 1^{5} = 0$ (A1)

$$\Rightarrow \sin x \{2\cos x - \sin x\} = 0 \text{ or } \sin x \{3\cos x - 1\} = 0$$

$$\Rightarrow 3\cos^2 x - 1 = 0$$
(A1)

$$\Rightarrow \cos x = \pm \sqrt{\left(\frac{1}{3}\right)} \tag{A1}$$

At A,
$$f(x) > 0$$
, hence $\cos x = \sqrt{\left(\frac{1}{3}\right)}$ (R1)(AG)

(iii)
$$f(x) = \sqrt{\left(\frac{1}{3}\left(1 - \left(\sqrt{\left(\frac{1}{3}\right)}\right)^2\right)}\right)$$
 (M1)
 $= \frac{2}{3} \times \frac{1}{\sqrt{3}} = \frac{2}{9}\sqrt{3}$ (A1)

$$\overline{\overline{3}} = \overline{9}\sqrt{3} \tag{A1}$$

[9 marks]

(d)
$$x = \frac{\pi}{2}$$
 (A1)

[1 mark]

(e) (i)
$$\int (\cos x)(\sin x)^2 dx = \frac{1}{3}\sin^3 x + c$$
 (M1)(A1)

(ii) Area =
$$\int_0^{\pi/2} (\cos x) (\sin x)^2 dx = \frac{1}{3} \left\{ \left(\sin \frac{\pi}{2} \right)^3 - (\sin 0)^3 \right\}$$
 (M1)

$$\frac{1}{3}$$
 (A1)

[4 marks]

(f) At C
$$f''(x) = 0$$
 (M1)

=

$$\Leftrightarrow 9\cos^3 x - 7\cos x = 0$$

$$\Leftrightarrow \cos x (9\cos^2 x - 7) = 0$$
(M1)

$$\Rightarrow x = \frac{\pi}{2} \text{ (reject) } or \ x = \arccos \frac{\sqrt{7}}{3} = 0.491 \text{ (3 s.f.)}$$
(A1)(A1)

[4 marks]

Question 7 continued

Note: Award (M1)(A1) for sketching the graphs of e^{-x} and x^2 , or the graph of $e^{-x} - x^2$, for $0.5 \le x \le 1$.

(b) (i)
$$x_{n+1} = \sqrt{(e^{-x_n})}, x_0 = 0.7$$

 $x_1 = 0.7046(880897)$
 $x_2 = 0.7030(382037)$
 $x_3 = 0.7036(184094)$
(A2)

Note: Award (A2) for three correct, (A1) for two correct, (A0) for one correct.

(ii)
$$x_{10} = 0.7034677...$$

 $x_{11} = 0.7034673...$ (M1)
 $x_{12} = 0.7034674...$
 $x = 0.703467 (6 s.f.)$ (A1)

(c) (i)
$$e^{-x} = x^2$$

 $\Rightarrow -x = \ln x^2$
 $\Rightarrow x = -\ln x^2 = -2\ln x$ (A1)
 $x_{n+1} = -\ln(x_n^2) = -2\ln x_n$ (A1)
 $x_0 = 0.7$ (AG)

(ii)
$$x_1 = 0.7133(49887...)$$

 $x_2 = 0.6755(66505...)$
 $x_3 = 0.7844(07346...)$ (A1)

Note: Award (A1) for all three correct.

(iii) It is divergent.

(A1) [4 marks] Total [30 marks] 8.

(i)

Note: Geometric or algebraic approaches may be used in parts (a) and (b).

(a) **PQ** is a reflection in the y-axis (or the line x = 0)

(A2)

OR

PQ is a reflection in the *y*-axis (or the line x = 0)

OR

$$Q \text{ has matrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad P \text{ has matrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \qquad (M1)$$
$$\Rightarrow PQ = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\Rightarrow PQ \text{ is a reflection in the y-axis (or the line $x = 0$)} \qquad (A1)$$

[2 marks]

Question 8(*i*) *continued*

(b) X is a reflection in the x-axis (or the line y = 0). (A3) Note: Award (A1) for reflection, (A2) for x-axis.

OR

X is a reflection in the x-axis (or the line y = 0).

OR

$$XQ = P \Longrightarrow X = PQ^{-1} \tag{M1}$$

Note: If candidate gives $X = Q^{-1}P$ award (*M0*) but use **ft**.

$$\boldsymbol{Q}^{-1} \text{ is rotation by } -90^{\circ} \text{ about } (0, 0) \text{ and has matrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$\Rightarrow \boldsymbol{X} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(A1)

X is a reflection in the *x*-axis (or the line y = 0).

[3 marks]

(A1)

(A1)

- 19 -

Question 8 continued

(ii) (a)
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OC} = \begin{pmatrix} 12\\ 9 \end{pmatrix} + \begin{pmatrix} -10\\ 5 \end{pmatrix} = \begin{pmatrix} 2\\ 14 \end{pmatrix}$$
 (A1)
[1 mark]

(b) (i)
$$(12, 9)$$
 is on the line $4y - 3x = 0$
 $\Leftrightarrow 4(9) - 3(12) = 0 \Leftrightarrow 0 = 0$ (A1)

(ii)
$$\overrightarrow{CC'} = \begin{pmatrix} -6 - (-10) \\ 8 - 5 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 (A1)

Vector in direction of 4y - 3x = 0 is $\vec{OA} = \begin{pmatrix} 12\\ 9 \end{pmatrix}$

$$\vec{CC'}$$
 is parallel to invariant line. (R1)
OR

Gradient of (CC') =
$$\frac{8-5}{-6-(-10)} = \frac{3}{4}$$
 (A1)
Invariant line: $y = \frac{3}{4}x$ has gradient $\frac{3}{4}$

$$\overrightarrow{CC'}$$
 is parallel to invariant line.

(R1) [3 marks]

(c) (i) Since
$$M \begin{pmatrix} 12 \\ 9 \end{pmatrix} = \begin{pmatrix} 12 \\ 9 \end{pmatrix}$$
 and $M \begin{pmatrix} -10 \\ 5 \end{pmatrix} = \begin{pmatrix} -6 \\ 8 \end{pmatrix}$
Then $M \begin{pmatrix} 12 & -10 \\ 9 & 5 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 9 & 8 \end{pmatrix}$ (*R1*)

(ii)
$$M = \begin{pmatrix} 12 & -6 \\ 9 & 8 \end{pmatrix} \begin{pmatrix} 12 & -10 \\ 9 & 5 \end{pmatrix}^{-1}$$
 (M1)

$$= \begin{pmatrix} 12 & -6 \\ 9 & 8 \end{pmatrix} \frac{1}{150} \begin{pmatrix} 5 & 10 \\ -9 & 12 \end{pmatrix}$$
(A1)(A1)

$$=\frac{1}{150} \begin{pmatrix} 114 & 48\\ -27 & 186 \end{pmatrix} = \begin{pmatrix} 0.76 & 0.32\\ -0.18 & 1.24 \end{pmatrix}$$
(A1)

(iii) A shear transformation preserves area (R1)
and
$$|\det M|$$
 is the area scale-factor. Hence det $M = \pm 1$ (R1)
In this case det $M = 0.76 (1.24) - 0.32 (-0.18) = +1$ (A1)

[8 marks]

(d) Area of parallelogram OABC = area of rectangle OAB'C' (M1)
Area =
$$\left| \overrightarrow{OA} \right| \left| \overrightarrow{OC'} \right| = \sqrt{9^2 + 12^2} \sqrt{(-6)^2 + 8^2} = 15(10)$$
 (M1)

[3 marks]

Question 8 continued

Total [30 marks]