Name

MATHEMATICAL METHODS
STANDARD LEVEL
PAPER 1

STANDARD LEVEL PAPER 1	
Thursday 2 November 2000 (afternoon)	Number
1 hour	

INSTRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures, as appropriate.
- Write the make and model of your calculator in the box below e.g. Casio fx-7400G, Sharp EL-9400, Texas Instruments TI-80.

Calculator

Make	Model

EXAMINER	TEAM LEADER	IBCA
TOTAL	TOTAL	TOTAL
/60	/60	/60

880-290 15 pages Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

- 1. Two ordinary, 6-sided dice are rolled and the total score is noted.
 - (a) Complete the tree diagram by entering probabilities and listing outcomes.

(b) Find the probability of getting one or more sixes.

Working:	
	Answer: (b)

2. The table shows the scores of competitors in a competition.

Score	10	20	30	40	50
Number of competitors with this score	1	2	5	k	3

The mean score is 34. Find the value of k.

Working:	
_	
	Answer:

880–290 **Turn over**

3. A curve with equation y = f(x) passes through the point (1, 1). Its gradient function is f'(x) = -2x + 3.

Find the equation of the curve.

Working:

Answer:

- **4.** Given that $\sin \theta = \frac{1}{2}$, $\cos \theta = -\frac{\sqrt{3}}{2}$ and $0^{\circ} \le \theta \le 360^{\circ}$,
 - (a) find the value of θ ;
 - (b) write down the exact value of $\tan \theta$.

Working:

Answers:
(a) ______
(b) _____

5.	The line L passes through the origin and is parallel to the vector $2i + 3j$.	
	Write down a vector equation for L .	

Working:	
	Answer:

880–290 **Turn over**

6. The following Venn diagram shows a sample space U and events A and B.

n(U) = 36, n(A) = 11, n(B) = 6 and $n(A \cup B)' = 21$.

- (a) On the diagram, shade the region $(A \cup B)'$.
- (b) Find
 - (i) $n(A \cap B)$;
 - (ii) $P(A \cap B)$.
- (c) Explain why events A and B are not mutually exclusive.

Working:	
Ansv	vers:
(b)	
	(ii)

7. The diagram shows a vertical pole PQ, which is supported by two wires fixed to the horizontal ground at A and B.

BQ = 40 m $P\widehat{B}Q = 36^{\circ}$ $B\widehat{A}Q = 70^{\circ}$ $A\widehat{B}Q = 30^{\circ}$

Find

- (a) the height of the pole, PQ;
- (b) the distance between A and B.

- 8. Given that $f(x) = (2x + 5)^3$, find
 - (a) f'(x);
 - (b) $\int f(x) dx$.

Working:	
	Answers: (a)
	(b)

The diagrams show how the graph of $y = x^2$ is transformed to the graph of y = f(x) in three 9. steps.

For each diagram give the equation of the curve.

(a)

(c)

3

Working:

Answers:

- (c)

10. The diagram shows a circle of radius 5 cm.

Find the perimeter of the shaded region.

Working:	
	Answer:

11. $f(x) = 4 \sin \left(3x + \frac{\pi}{2}\right).$

For what values of k will the equation f(x) = k have no solutions?

Working:	
	Answers:

880–290 **Turn over**

12. \$1000 is invested at the beginning of each year for 10 years.

The rate of interest is fixed at 7.5% per annum. Interest is compounded annually.

Calculate, giving your answers to the nearest dollar

- (a) how much the first \$1000 is worth at the end of the ten years;
- (b) the total value of the investments at the end of the ten years.

Working:	
·	
	Answers:
	(a)
	(b)

13. The triangle ABC is defined by the following information

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \qquad \overrightarrow{AB} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \qquad \overrightarrow{AB} \cdot \overrightarrow{BC} = 0, \qquad \overrightarrow{AC} \text{ is parallel to } \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

(a) On the grid below, draw an accurate diagram of triangle ABC.

(b) Write down the vector \overrightarrow{OC} .

Working:		
	·	
	Answer: (b)	

14. The diagram shows the graph of the function $y = ax^2 + bx + c$.

Complete the table below to show whether each expression is positive, negative or zero.

Expression	positive	negative	zero
а	,		
c			
$b^2 - 4ac$			
b			

Working:		

15. The diagram shows the graph of the function $y = 1 + \frac{1}{x}$, $0 < x \le 4$. Find the exact value of the area of the shaded region.

Working:	
	Answer: