

MARKSCHEME

May 2000

MATHEMATICAL STUDIES

Standard Level

Paper 2

(ii) See graph.

Note: Award (A1) for points plotted correctly, (A1) for the straight line joining the points.

[4 marks]

(A2)

continued...

Question 1 continued

(ii)
$$\$ 68 - \$ 62$$
 (M1)
= $\$ 6$ (A1)

[3 marks]

(d)	SPEEDY	SPEEDY COURIER		IMMEDIATE COURIER	
	W	С	W	С	l otal cost
	1.5	46	4	74	120
	2	50	3.5	68	118
	2.5	54	3.0	62	116
	3	58	2.5	56	114
	3.5	62	2.0	50	112
	4	66	1.5	40	106

(M2)

Therefore he sent 4 kilograms with *SPEEDY COURIER* and 1.5 kilograms with *IMMEDIATE COURIER*.

(A1) [3 marks]

Total [15 marks]

M00/530/S(2)M

Mean = $\frac{5 \times 0 + 10 \times 1 + 6 \times 2 + 3 \times 3 + 1 \times 4}{25} = 1.4$

2.

(a)

(M2)(AG)

(b)
$$\sum f(x-\overline{x})^2 = 5(0-1.4)^2 + 10(1-1.4)^2 + 6(2-1.4)^2 + 3(3-1.4)^2 + 1(4-1.4)^2 = 28$$
 (M2)

Note: Award (M1) for $(x - \overline{x})^2$ values, and (M1) for multiplying by the appropriate frequencies.

S.D. =
$$\sqrt{\frac{28}{25}}$$
 (M1)

(d)
$$P(>2 \text{ children}) = \frac{3+1}{25}$$
 (M1)

[2 marks]

(e) (i) P(both females have > 2 children) =
$$\frac{4}{25} \times \frac{3}{24}$$
 (M1)

$$=\frac{12}{600} \text{ or } \frac{1}{50} \text{ or } 0.02 \tag{A1}$$

(ii) P(only 1 female has > 2 children) =
$$2 \times \frac{4}{25} \times \frac{21}{24}$$
 (M2)

Note: Award (M1) for $\frac{4}{25} \times \frac{21}{24}$, (M1) for multiplying by 2.

 $=\frac{4}{25}$

$$=\frac{168}{600} \text{ or } \frac{21}{75} \text{ or } 0.28 \tag{A1}$$

(iii) P(second has 2 children | first has 0) =
$$\frac{6}{24}$$
 or $\frac{1}{4}$ or 0.25 (A1)

[6 marks]

Total [15 marks]

В

3

9

2

(A1) (A3)

(ii) (a) (i)
$$p \Rightarrow q$$
 (A1)

(b) (i)

р	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$\neg r$	$(p \Rightarrow q) \land (q \Rightarrow r) \land \neg r$	$\neg p$	$\left[(p \Longrightarrow q) \land (q \Longrightarrow r) \land \neg r \right] \Longrightarrow \neg p$
Т	Т	Т	Т	Т	F	F	F	Т
Т	Т	F	Т	F	Т	F	F	Т
Т	F	Т	F	Т	F	F	F	Т
Т	F	F	F	Т	Т	F	F	Т
F	Т	Т	Т	Т	F	F	Т	Т
F	Т	F	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	F	Т	Т
F	F	F	Т	Т	Т	Т	Т	Т

(A5)

Note: Award (A1) for each correct bold column.

[5 marks]

(ii) The truth table is showing that the following argument is valid.
 If Matthew arrives home before six o'clock he will cook dinner. If Matthew cooks dinner then Jill will wash the dishes. Jill did not wash the dishes. Therefore Matthew did not arrive before six o'clock.

(R2) [2 marks]

Total [15 marks]

(A1)(A1) [2 marks]

4. (a) A ;
$$y=0, 3x=24 \Rightarrow x=8$$

A (8,0)
B ; $x=0, 4y=24 \Rightarrow y=6$
B (0,6)
(A1)
[2 marks]
(b) M ; $x_{m} = \frac{8+0}{4} = 4, y_{m} = \frac{0+6}{4} = 3$

(b) M;
$$x_m = \frac{3+3}{2} = 4, y_m = \frac{3+3}{2} = 3$$

M(4,3)

(c)
$$L_2$$
: gradient $= \frac{3-2}{4-0} = \frac{5}{4}$ (A1)

$$y = \frac{5}{4}x - 2 \text{ (or equivalent)}$$
(A1)
[2 marks]

(d) (i)
$$M(4,3), C(0,-2)$$

 $MC = \sqrt{(4-0)^2 + (3-(-2))^2}$
 $= \sqrt{41}$
 $= 6.40$
(A1)

(ii)
$$A(8,0), C(0,-2)$$

 $AC = \sqrt{8^2 + (-2)^2}$ (M1)
 $= \sqrt{68}$
 $= 8.25$ (A1)

$$\cos M = \frac{5^2 + (\sqrt{41})^2 - (\sqrt{68})^2}{2 \times 5\sqrt{41}}$$
(M1)
25 + 41 - 68

$$=\frac{25+41-66}{10\sqrt{41}}$$
 (M1)

$$\hat{CMA} = 91.8^{\circ} (3 \text{ s.f.})$$
 (A1)

(ii) Area of
$$\Delta CMA = \frac{1}{2}\sqrt{41} \times 5 \sin 91.8^{\circ}$$
 (M1)
= 15.99991171...
= 16.0 (3 s.f.) (A1)

(A1) [5 marks] Total [15 marks]

5. (a)
$$A = C \left(1 + \frac{r}{100} \right)^n$$

= $1000 \left(1 + \frac{5}{100} \right)^5$ (M1)

(b)
$$2000 = 1000 \left(1 + \frac{5}{100}\right)^n$$
 (M1)

$$2 = 1.05^n$$
 (M1)

п	1.05 ⁿ
10	$1.05^{10} = 1.6$
20	$1.05^{20} = 2.7$
15	$1.05^{15} = 2.07$
14	$1.05^{14} = 1.98$

$$n = 15$$
 years

(M1)

(A1) [4 marks]

(c)

Year	Deposit	Start year balance	End of year balance
1	\$ 1000	\$ 1000	\$ 1050
2	\$ 1000	\$ 2050	\$ 2152.50
3	\$ 1000	\$ 3152.50	\$ 3310.125
4	\$ 1000	\$ 4310.125	\$ 4525.63125
5	\$ 1000	\$ 5525.63125	\$ 5801.91

After 5 years \$ 5801.91

(M3)

(A1) [4 marks]

Total [10 marks]

6.

continued...

Question 6 continued

(d)

(ii)	(a)	No.	(A1) [1 mark]
	(b)	2	(A1) [1 mark]
	(c)	$M^{2} = \begin{pmatrix} 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$	
		(i) $a=0\times0+2\times1+0\times0+1\times0$ $=2$ OR	(M1) (A1)
		a = 2	(C2)
		(ii) $b = 0 \times 1 + 1 \times 0 + 0 \times 0 + 0 \times 0$ $= 0$	(M1) (A1)
		OR	
		b = 0	<i>(C2)</i>

[4 marks]

Note: Award *[¹/₂ mark]* for each directed segment and round down.

[4 marks]

Question 6 continued

(iii) (a)

(i) employed unemployed
employed
$$\begin{pmatrix} 0.9 & 0.15 \\ 0.1 & 0.85 \end{pmatrix}$$
 (A1)
(A1)(A1)

(ii)
$$\begin{pmatrix} 0.9 & 0.15 \\ 0.1 & 0.85 \end{pmatrix} \begin{pmatrix} 7500 \\ 2500 \end{pmatrix}$$
 (M1)

$$= \begin{pmatrix} 7125\\2875 \end{pmatrix}$$

Therefore 2875 people will be unemployed next year. (A1)

OR 2875 people will be unemployed next year. (C2)

(b) (i)
$$\begin{pmatrix} 0.825 & 0.2625 \\ 0.175 & 0.7375 \end{pmatrix} \begin{pmatrix} 7500 \\ 2500 \end{pmatrix} = \begin{pmatrix} m \\ n \end{pmatrix}$$

 $m = 0.825 \times 7500 + 0.2625 \times 2500$ (M1)
 $= 6843.75$
 $= 6844 (4 \text{ s.f.})$ (A1)
OR

$$m = 6844 (4 \text{ s.f.})$$
 (C2)

Total [30 marks]

7. (i) (a)

)
Note: Candidates may obtain these answers directly from a graphic
display calculator. In all three parts of (a), if candidates have
obtained their answers in different ways, award marks as follows:
Award(AI) for correct answers with no working:
(MI)(AI) for correct answers with some indication of correct
use of a GDC, e.g. a diagram.
(i)

$$P(D < 40) = P(Z < \frac{40 - 50}{4})$$

$$= P(Z < -2.5)$$

$$\Phi(2.5) = 0.9938$$
(MI)

$$P(D < 40) = 1 - 0.9938$$

$$= 0.0062 (0.00621 3 \text{ s.f.})$$
(II)

$$P(D < 45) = P(Z < \frac{45 - 50}{4})$$

$$P(D < 45) = P(Z < \frac{45 - 50}{4})$$

$$P(D < 45) = P(Z < -1.25)$$

$$\Phi(125) = 0.8944$$
(MI)

$$P(40 < D < 45) = 0.9938 - 0.8944$$

$$= 0.0994$$
(A1)

[3 marks]

Question 7 (i) (a) continued

(iii)

$$A_{1} \qquad A_{2} \qquad A_{2} \qquad A_{2} \qquad A_{3} \qquad A_{4} \qquad A_{5} \qquad A_{5}$$

(A1) [3 marks]

Question 7 (i) continued

(b) (i)
$$H_0: \mu = 50 \text{ and } \sigma = 4$$

or
The machine is operating to its required level of performance.
or
The machine does not need adjusting. (A1)
 $H_1: \mu \neq 50 \text{ and } / \text{ or } \mu \neq 4$
or
The machine is not operating to its required level of performance.
or
The machine needs to be adjusted. (A1)
[2 marks]

(ii)
$$\chi^2_{\text{calc}} = \frac{(16-11)^2}{16} + \frac{(34-29)^2}{34} + \frac{(34-33)^2}{34} + \frac{(14-18)^2}{14} + \frac{(2-9)^2}{2}$$
 (M2)

Note: Award (M1) for numerators and (M1) for denominators.

$$=\frac{25}{16} + \frac{25}{34} + \frac{1}{34} + \frac{16}{14} + \frac{49}{2}$$
(M1)

$$= 28.0 (3 \text{ s.f.})$$
 (A1)

OR

= 27.97

$$\chi^{2}_{\text{calc}} = \frac{(16-11)^{2}}{16} + \frac{(34-29)^{2}}{34} + \frac{(34-33)^{2}}{34} + \frac{(16-27)^{2}}{16}$$
(M2)

$$=9.89 (3 \text{ s.f.})$$
 (A1)

[4 marks]

(iii) Degrees of freedom=4(M1)Critical value= 9.488(M1)

Therefore since χ^2_{calc} > critical value, the machine needs adjusting.	(R1)
	[3 marks]

Question 7 continued

(ii) (a) (i)
$$S_x = 11.2$$
 (A1)

$$r = \frac{36.7}{11.2 \times 3.5} \tag{M2}$$

$$= 0.936 (3 \text{ s.f.})$$
 (A1)

OR

 $S_x = 11.6$ (A1)

$$r = \frac{36.7}{11.6 \times 3.5} \tag{M2}$$

$$=0.904 (3 \text{ s.f.})$$
 (A1)

(ii) The correlation coefficient suggests a strong positive correlation between the two variables. (R1) [5 marks]

(b)
$$y - \overline{y} = \frac{Sxy}{(Sx)^2} (x - \overline{x})$$

 $y - 10.6 = \frac{36.7}{11.2^2} (x - 30.4)$ (M1)
 $y = 0.293x + 1.69$ (or $y = 0.293x + 1.71$) (allow ft from (a) (i)) (A2)

[3 marks]

(c)	(i)	$y = 0.293 \times 33 + 1.69$	(M1)
		= 11.539 = 11 hours	(A1)
	<i>(</i> •••)		

(ii)
$$8 = 0.293x + 1.69$$
 (M1)
 $x = 21.54$ (A1)
[4 marks]

Total [30 marks]

8.

(A1)	(a) (i) B: local maximum.	(i)
(A1) [2 marks]	(ii) D: point of inflexion.	
(A3)	 (b) At B, the gradient is zero. From B to C, the gradient is negative. At C, the gradient is zero. From C to D, the gradient is positive. At D, the gradient is zero. 	
[3 marks]	Note: Award <i>[¹/₂ mark]</i> for each correct statement and round up.	
(M2)	(c) Gradient = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{f(a+4) - f(a)}{(a+4) - (a)}$ Note: Award (M1) for $f(a+4)$	
(A1) [3 marks]	$=\frac{f\left(a+4\right)-f\left(a\right)}{4}$	
(M1) (A1) [2 marks]	(a) $k = 4^3 - 3 \times 4^2 + 3 \times 4 + 4$ = 32 kilometres.	(ii)
(A2)	(b) (i) $k = t^3 - 3t^2 + 3t + 4$ $\frac{dk}{dt} = 3t^2 - 6t + 3$	
	Note: Award (A2) for all terms correct, (A1) for 2 correct, (A0) for 1 or none correct.	

[2 marks]

(ii) When
$$t = 3$$
, $\frac{dk}{dt} = 3 \times 3^2 - 6 \times 3 + 3$ (M1)
= 12 km h⁻¹ (A1)

[2 marks]

continued...

Question 8 (ii) (b) continued

		(iii)	$\frac{\mathrm{d}k}{\mathrm{d}t} = 0$	
			dt $0 = 3t^2 - 6t + 3$	<i>(M1</i>)
			$0 = t^2 - 2t + 1$	(111)
			$0 = (t-1)^2$	(M1)
			Therefore $t = 1$ hour	(A1) [3 marks]
		(iv)	When $t = 1$, $k = 1^3 - 3 \times 1^2 + 3 \times 1 + 4$	(M1)
			= 5 kilometres.	(A1) [2 marks]
(iii)	(a)	2 <i>x</i> +	y	(A1) [1 mark]
	(b)	2500 2500	y = 2x + y y - 2x = y	(M1) (AG) [1 mark]
	(c)	(i)	Area $A(x) = xy$ = $x(2500-2x)$ = $2500x - 2x^2$	(M1) (M1) (AG) [2 marks]
		(ii)	A'(x) = 2500 - 4x	(A1) [1 mark]
		(iii)	A'(x) = 0	
			$ \begin{array}{l} 0 = 2500 - 4x \\ 4x = 2500 \\ x = 625 \end{array} $	(M1) (M1) (A1) [3 marks]
		(iv)	$A(x) = 2500x - 2x^{2}$ $A(625) = 2500 \times 625 - 2(625)^{2}$ = 781250	(M2)
			$= 781000 \text{ m}^2$	(A1) [3 marks]
				Total [30 marks]