MARKSCHEME

May 2000

MATHEMATICAL METHODS

Standard Level

Paper 2

1. (a) Plan A: $1000,1080,1160 \ldots$ Plan B: $1000,1000(1.06), 1000(1.06)^{2} \ldots$

2nd month: \$ 1060, 3rd month: \$ 1123.60
(A1)(A1)
[2 marks]
(b) For Plan A, $\quad \mathrm{T}_{12}=a+11 d$

$$
\begin{aligned}
& =1000+11(80) \\
& =\$ 1880
\end{aligned}
$$

For Plan B, $\quad T_{12}=1000(1.06)^{11}$
(M1)
$=\$ 1898$ (to the nearest dollar)
(A1)
[4 marks]
(c) (i) For Plan $\mathrm{A}, \mathrm{S}_{12}=\frac{12}{2}[2000+11(80)]$

$$
\begin{align*}
& =6(2880) \tag{M1}\\
& =\$ 17280(\text { to the nearest dollar })
\end{align*}
$$

(A1)
(ii) For Plan $\mathrm{B}, \mathrm{S}_{12}=\frac{1000\left(1.06^{12}-1\right)}{1.06-1}$
$=\$ 16870$ (to the nearest dollar)
(M1)
(A1)
[4 marks]

Total [10 marks]

2. (a) (i) $t=0 \quad s=800$
$t=5 \quad s=800+500-100=1200$
(M1)
distance in first 5 seconds $=1200-800$
$=400 \mathrm{~m}$

$$
(A 1)
$$

[2 marks]
(ii) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}=100-8 t$
(A1)

$$
\text { At } \begin{align*}
t=5, \text { velocity } & =100-40 \tag{M1}\\
& =60 \mathrm{~ms}^{-1}
\end{align*}
$$

$$
(A 1)
$$

[3 marks]
(iii) Velocity $\begin{aligned}=36 \mathrm{~ms}^{-1} \Rightarrow 100-8 t & =36 \\ t & =8 \text { seconds after touchdown. }\end{aligned}$ [2 marks]

$$
\text { (iv) When } \begin{align*}
t=8, s & =800+100(8)-4(8)^{2} \tag{M1}\\
& =800+800-256 \tag{A1}\\
& =1344 \mathrm{~m}
\end{align*}
$$

(A1)
[3 marks]
(b) If it touches down at P , it has $2000-1344=656 \mathrm{~m}$ to stop.

To come to rest, $100-8 t=0 \Rightarrow t=12.5 \mathrm{~s}$
Distance covered in $12.5 s=100(12.5)-4(12.5)^{2}$

$$
\begin{align*}
& =1250-625 \tag{M1}\\
& =625
\end{align*}
$$

(A1)
Since $625<656$, it can stop safely.
3. (a) $\bar{x}=\$ 59$

OR

$$
\begin{align*}
\bar{x} & =\frac{10 \times 24+30 \times 16+\ldots+110 \times 10+130 \times 4}{24+16+\ldots+10+4} \tag{M1}\\
& =\frac{7860}{134} \\
& =\$ 59
\end{align*}
$$

(b)

Money (\$)	<20	<40	<60	<80	<100	<120	<140
Customers	24	40	$\mathbf{6 2}$	$\mathbf{1 0 2}$	$\mathbf{1 2 0}$	$\mathbf{1 3 0}$	$\mathbf{1 3 4}$

Note: Award (A1) for the correct scale, (A1) for the points, and (A2) for the curve.
(c) (i) $\quad t=2 d^{2 / 3}+3$

Mean $d=59$
Mean $t \approx 2 \times(59)^{2 / 3}+3$

$$
\approx 33.3 \mathrm{~min} .(3 \mathrm{s.f} .)(\text { accept } 33.2)
$$

(ii) $t>37 \Rightarrow 2 d^{2 / 3}+3>37$

$$
\begin{aligned}
2 d^{2 / 3} & >34 \\
d^{2 / 3} & >17 \\
d & >(17)^{3 / 2} \\
d & >70.1
\end{aligned}
$$

From the graph, when $d=70.1, n=82$

$$
\text { number of shoppers }=134-\mathbf{8 2}
$$

$$
=52
$$

4. (a)

(A5)

Notes: Award (A1) for appropriate scales marked on the axes.
Award (A1) for the x-intercepts at $(\pm 2.3,0)$.
Award (A1) for the maximum and minimum points at $(\pm 1.25, \pm 1.73)$.
Award (A1) for the end points at $(\pm 3, \mp 2.55)$.
Award (A1) for a smooth curve.
Allow some flexibility, especially in the middle three marks here.
[5 marks]
(A1)
[1 mark]
(A1)(A1)
(c) $\quad \int(\pi \sin x-x) \mathrm{d} x=-\pi \cos x-\frac{x^{2}}{2}+C$

Note: Do not penalise for the absence of C.

$$
\begin{align*}
\text { Required area } & =\int_{0}^{1}(\pi \sin x-x) \mathrm{d} x \tag{M1}\\
& =0.944
\end{align*}
$$

OR

$$
\text { area }=0.944
$$

5. (a) $\left|\binom{18}{24}\right|=30 \mathrm{kmh}^{-1}$

$$
\begin{align*}
\left|\binom{36}{-16}\right| & =\sqrt{36^{2}+(-16)^{2}} \\
& =39.4 \mathrm{kmh}^{-1} \tag{A1}
\end{align*}
$$

(b) (i) After $1 / 2$ hour, position vectors are

$$
\binom{9}{12} \text { and }\binom{18}{-8}
$$

(ii) At 6.30 a.m., vector joining their positions is

$$
\begin{align*}
& \binom{9}{12}-\binom{18}{-8}=\binom{-9}{20} \text { (or }\binom{9}{-20} \text {) } \tag{M1}\\
& \left|\binom{-9}{20}\right| \\
& =\sqrt{481}(=21.9 \mathrm{~km} \text { to } 3 \text { s.f. })
\end{align*}
$$

(c) The Toyundai must continue until its position vector is $\binom{18}{k}$

Clearly $k=24$, i.e. position vector $\binom{18}{24}$
To reach this position, it must travel for 1 hour in total.
Hence the crew starts work at 7.00 a.m.

$$
\begin{aligned}
& \text { (d) Southern (Chryssault) crew lays } 800 \times 5=4000 \mathrm{~m} \\
& \text { Northern (Toyundai) crew lays } 800 \times 4.5=3600 \mathrm{~m} \\
& \text { Total by } 11.30 \text { a.m. }=7.6 \mathrm{~km}
\end{aligned}
$$

Their starting points were $24-(-8)=32 \mathrm{~km}$ apart
Hence they are now $32-7.6=24.4 \mathrm{~km}$ apart

Question 5 continued

(e) Position vector of Northern crew at 11.30 a.m. is

$$
\binom{18}{24-3.6}=\binom{18}{20.4}
$$

$$
\begin{aligned}
\text { Distance to base camp } & =\left|\binom{18}{20.4}\right| \\
& =27.2 \mathrm{~km}
\end{aligned}
$$

Time to cover this distance $=\frac{27.2}{30} \times 60$

$$
=54.4 \text { minutes }
$$

$$
=54 \text { minutes (to the nearest minute) }
$$

6. (i) (a) Let X be the lifespan in hours

$$
X \sim \mathrm{~N}\left(57,4.4^{2}\right)
$$

(i) $\quad a=-0.455$ (3 s.f.)

$$
\begin{equation*}
b=0.682 \text { (3 s.f.) } \tag{A1}
\end{equation*}
$$

(ii) (a) $\mathrm{P}(X>55)=\mathrm{P}(Z>-0.455)$

$$
=0.675
$$

(b) $\mathrm{P}(55 \leq X \leq 60) \quad=\mathrm{P}\left(\frac{2}{4.4} \leq Z \leq \frac{3}{4.4}\right)$

$$
\approx \mathrm{P}(0.455 \leq Z \leq 0.682)
$$

$$
\begin{equation*}
\approx 0.6754+0.752-1 \tag{A1}
\end{equation*}
$$

$$
=0.428 \text { (3 s.f.) }
$$

OR

$$
\mathrm{P}(55 \leq X \leq 60)=0.428 \text { (3 s.f. })
$$

(b) $\quad 90 \%$ have died \Rightarrow shaded area $=0.9$

0

Hence $\quad t=57+(4.4 \times 1.282)$

$$
=57+5.64
$$

OR

$$
=62.6 \text { hours }
$$

$$
t=62.6 \text { hours }
$$

Question 6 continued

(ii) (a) 95% between $\$ 33000$ and $\$ 47000$

$$
\begin{aligned}
& \Rightarrow 2.5 \% \text { above } \$ 47000 \\
& \Rightarrow \$ 47000-\$ 40000 \text { corresponds to } z=1.96 \\
& \Rightarrow \frac{7000}{\sigma}=1.96 \\
& \Rightarrow \sigma=3571 \\
& =\$ 3570 \text { (3 s.f.) }
\end{aligned}
$$

(b) $\mathrm{SE}=\frac{\sigma}{\sqrt{50}}$ for samples of size 50

$$
=\frac{3571}{\sqrt{50}}
$$

$$
=\$ 505
$$

(c) 95% confidence interval for sample means

$$
\begin{aligned}
& =40000 \pm 1.96 \mathrm{SE} \\
& =40000 \pm 1.96(505) \\
& =40000 \pm 990
\end{aligned}
$$

i.e. 95% confidence that the mean lies between \$ 39010 and \$ 40990
(d) Since $\$ 40900<\$ 40990$, the mean of this sample lies within the 95% confidence interval, i.e. there is not evidence that the salaries are higher in this province.

Question 6 continued

(iii) (a) Using a calculator:

L_{1}	14	15	15	12	11	18
$\mathrm{~L}_{2}$	61	65	69	48	35	70

Using an appropriate calculator function with correct arguments gives

$$
y=a x+b
$$

with $a=5.027 \ldots=5.03(3 \mathrm{~s} . \mathrm{f})$

$$
b=-13.216 \ldots=-13.2(3 \mathrm{s.f})
$$

OR

$$
y=5.03 x-13.2
$$

(b) $y=a x+b$ with $x=13$ gives

$$
\begin{aligned}
y & =13(5.027)-13.216 \\
& =52.13 \\
& =52 \text { (to the nearest whole number) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
r & =0.90469 \ldots \\
& =0.905 \text { (3 s.f.) }
\end{aligned}
$$

Note: Some students may use the results $\Sigma y=n a+b \Sigma x, \Sigma x y=a \Sigma x+b \Sigma x^{2}$, leading to $348=6 a+85 b, 5085=85 a+1235 b$. Students attempting to find a, b using this method should be awarded generous marks, e.g. these 2 equations should be given 3 of the marks in part (a).
7. (i) (a) $y=\mathrm{e}^{2 x} \cos x$

$$
\begin{align*}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\mathrm{e}^{2 x}(-\sin x)+\cos x\left(2 \mathrm{e}^{2 x}\right) \tag{A1}\\
& =\mathrm{e}^{2 x}(2 \cos x-\sin x) \tag{AG}
\end{align*}
$$

[2 marks]

(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \mathrm{e}^{2 x}(2 \cos x-\sin x)+\mathrm{e}^{2 x}(-2 \sin x-\cos x)$
(A1)(A1)

$$
\begin{align*}
& =\mathrm{e}^{2 x}(4 \cos x-2 \sin x-2 \sin x-\cos x) \tag{A1}\\
& =\mathrm{e}^{2 x}(3 \cos x-4 \sin x)
\end{align*}
$$

(c) (i) At P, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$

$$
\Rightarrow 3 \cos x=4 \sin x
$$

$\Rightarrow \tan x=\frac{3}{4}$
At $\mathrm{P}, x=a$, i.e. $\tan a=\frac{3}{4}$
(ii) The gradient at any point $=\mathrm{e}^{2 x}(2 \cos x-\sin x)$
(M1)
Therefore, the gradient at $\mathrm{P}=\mathrm{e}^{2 a}(2 \cos a-\sin a)$
When $\tan a=\frac{3}{4}, \cos a=\frac{4}{5}, \sin a=\frac{3}{5}$
(A1)(A1)
(by drawing a right triangle, or by calculator)
Therefore, the gradient at $\mathrm{P}=\mathrm{e}^{2 a}\left(\frac{8}{5}-\frac{3}{5}\right)$

$$
\begin{equation*}
=\mathrm{e}^{2 a} \tag{A1}
\end{equation*}
$$

[8 marks]
(ii) (a) From the table, there are solutions in $[-3,-2],[1,2]$
(b) $2 x^{3}-9 x+3=0$

$$
\begin{align*}
\Rightarrow 9 x & =2 x^{3}+3 \tag{A1}\\
x & =\frac{2 x^{3}+3}{9} \tag{AG}
\end{align*}
$$

and

$$
\begin{align*}
2 x^{3} & =9 x-3 \\
x^{3} & =\frac{9 x-3}{2} \tag{A1}\\
x & =\sqrt[3]{\frac{9 x-3}{2}} \tag{AG}
\end{align*}
$$

Question 7(ii) continued

(c) (i) $\quad x=0.342241$

Requires 6 iterations (accept any number from 5 to 9)
(ii) $g(x)=\frac{2 x^{3}+3}{9}$
$g^{\prime}(x)=\frac{6 x^{2}}{9}=\frac{2 x^{2}}{3}$
$g^{\prime}(-3)=6$ and $g^{\prime}(-2)=\frac{8}{3}$
Since $\left|g^{\prime}(x)\right|>1$ in $[-3,-2], g(x)$ will not converge in $[-3,-2]$.
Similarly, $g^{\prime}(1)=\frac{2}{3}$ and $g^{\prime}(2)=\frac{8}{3}$
$g(x)$ will not converge, and if it does (near $x=1$) it will give the same root as in part (i).

(iii) Gradient of $y=x$ is 1

It is clear from the graphs that at a and c, the gradient of $h(x)$ is less than 1 , whereas at b it is greater than 1 .
Hence, $h(x)$ will give the solutions a and c, but not the solution at b.
(iv) Solutions: $-2.27163,1.92939$ (6 s.f.)

Note: Award (G2) for 1 correct solution.
Award (G1) for a correct solution that is not correct to $\mathbf{6}$ s.f.
8. (i) (a) $\boldsymbol{R}=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$
(A1)
$\boldsymbol{S}=\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)$
$\boldsymbol{T}=\boldsymbol{R} \boldsymbol{S}$

$$
\begin{align*}
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \tag{A1}
\end{align*}
$$

[4 marks]

(b) Since $(0,0)$ is invariant under \boldsymbol{T}, we need consider only one point on $y=2 x$ Take $\binom{1}{2}$ for example.
$\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\binom{1}{2}=\binom{-1}{3}$
(M1)
The line joining $(0,0)$ and $(-1,3)$ has equation $y=-3 x$
(ii) $\quad \boldsymbol{Q}\binom{x}{y}=\binom{x-y}{x+y}$
$\Rightarrow \boldsymbol{Q}\binom{1}{0}=\binom{1}{1}$ and $\boldsymbol{Q}\binom{0}{1}=\binom{-1}{1}$
(M1)(M1)
$\Rightarrow \boldsymbol{Q}=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$
OR
Let $\boldsymbol{Q}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$
Then $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{y}=\binom{x-y}{x+y}$
$\Rightarrow \begin{aligned} a x+c y & =x-y \\ b x+d y & =x+y\end{aligned}$
$b x+d y=x+y$
$\Rightarrow \begin{array}{cc}a=1 & c=-1 \\ b=1 & d=1\end{array}$
$\boldsymbol{Q}=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$
(M1)
(A1)

Question 8 continued

(iii) (a) Matrix is $\boldsymbol{M N}$

$$
\begin{align*}
& =\left(\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 3 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 7 \\
1 & 8
\end{array}\right) \tag{A1}
\end{align*}
$$

(b) (i) $\quad\left(\begin{array}{cc}-1 & 7 \\ 1 & 8\end{array}\right)\binom{0}{0}=\binom{0}{0}$
(Or from definition of linear transformation)
(ii) $\quad a=\binom{6}{-4}$
$\boldsymbol{a}^{\prime}=\left(\begin{array}{cc}-1 & 7 \\ 1 & 8\end{array}\right)\binom{6}{-4}=\binom{-34}{-26}$
(M1)
A^{\prime} has coordinates $(-34,-26)$

OR

$$
\begin{align*}
& \text { Solve }-x+7 y=-15 \\
& x+8 y=0 \tag{M1}\\
& \Rightarrow x=8, y=-1 \\
& \text { B has coordinates }(8,-1)
\end{align*}
$$

Question 8(iii)(b) continued
(iv) OABC is a parallelogram

$$
\begin{align*}
\Rightarrow \overrightarrow{\mathrm{OA}} & =-\overrightarrow{\mathrm{BC}} \\
\boldsymbol{a} & =\boldsymbol{b}-\boldsymbol{c} \\
\boldsymbol{c} & =\boldsymbol{b}-\boldsymbol{a} \\
& =\binom{8}{-1}-\binom{6}{-4} \\
& =\binom{2}{3} \tag{A1}\\
\boldsymbol{c}^{\prime} & =\left(\begin{array}{cc}
-1 & 7 \\
1 & 8
\end{array}\right)\binom{2}{3} \\
& =\binom{19}{26}
\end{align*}
$$

(v) $\quad \boldsymbol{a} \cdot \boldsymbol{c}=\binom{6}{-4}\binom{2}{3}$

$$
=0
$$

\Rightarrow a perpendicular to \mathbf{c}
$\Rightarrow \mathrm{OABC}$ is a rectangle
$\boldsymbol{a}^{\prime} \cdot \boldsymbol{c}^{\prime}=\binom{-34}{-26}\binom{19}{26}$
$\Rightarrow \mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is not a rectangle
(vi) Area $\mathrm{OABC}=|\boldsymbol{a}| \boldsymbol{c} \mid$ since it is a rectangle

$$
\begin{align*}
& =\sqrt{52} \sqrt{13} \tag{A1}\\
& =26 \text { sq units }
\end{align*}
$$

$$
\begin{align*}
\text { Area } \mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} & =\left|\operatorname{det}\left(\begin{array}{cc}
-1 & 7 \\
1 & 8
\end{array}\right)\right| \times 26 \tag{M1}\\
& =15 \times 26 \\
& =390 \text { sq units }
\end{align*}
$$

