

MARKSCHEME

May 2000

MATHEMATICAL METHODS

Standard Level

Paper 2

1.	(a)	Plan A: 1000, 1080, 1160 Plan B: 1000, 1000(1.06), 1000(1.06) ² 2nd month: \$ 1060, 3rd month: \$ 1123.60	(A1)(A1) [2 marks]
	(b)	For Plan A, $T_{12} = a + 11d$ = 1000 + 11(80) = \$1880	(M1) (A1)
		For Plan B, $T_{12} = 1000(1.06)^{11}$ = \$1898 (to the nearest dollar)	(M1) (A1) [4 marks]
	(c)	(i) For Plan A, $S_{12} = \frac{12}{2} [2000 + 11(80)]$ = 6(2880)	(M1)
		= \$ 17280 (to the nearest dollar)	(A1)
		(ii) For Plan B, $S_{12} = \frac{1000(1.06^{12} - 1)}{1.06 - 1}$	(M1)
		= \$16870 (to the nearest dollar)	(A1) [4 marks]
		Tot	al [10 marks]
2.	(a)	(i) $t = 0$ $s = 800$ t = 5 $s = 800 + 500 - 100 = 1200distance in first 5 seconds = 1200 - 800$	(M1)
		$= 400 \mathrm{m}$	(A1) [2 marks]
		(ii) $v = \frac{\mathrm{d}s}{\mathrm{d}t} = 100 - 8t$	(A1)
		At $t = 5$, velocity = $100 - 40$	(M1)
		$= 60 \text{ ms}^{-1}$	(A1)
			[5 marks]
		(iii) Velocity = $36 \text{ ms}^{-1} \Rightarrow 100 - 8t = 36$ t = 8 seconds after touchdown.	(M1) (A1) [2 marks]
		(iv) When $t = 8$, $s = 800 + 100(8) - 4(8)^2$	(M1)
		= 800 + 800 - 256 = 1344 m	(A1) (A1) 13 marksl
	(b)	If it touches down at P it has $2000 - 1344 - 656$ m to stop	[5 murks] (M1)
	(0)	To come to rest, $100-8t = 0 \Rightarrow t = 12.5s$	(M1) (M1)
		Distance covered in 12.5 $s = 100(12.5) - 4(12.5)^2$ = 1250 - 625	(M1)
		= 625 Since $625 \le 656$, it can stop safely	(A1) (D1)
		Since 023×030 , it can stop sately.	(K1) [5 marks]
		То	al [15 marks]

(G2)

3. (a) $\overline{x} = \$59$

OR

$$\bar{x} = \frac{10 \times 24 + 30 \times 16 + ... + 110 \times 10 + 130 \times 4}{24 + 16 + ... + 10 + 4}$$
 (M1)
 $= \frac{7860}{134}$
= \$ 59 (A1)

(A4)

Note: Award (A1) for the correct scale, (A1) for the points, and (A2) for the curve.

[5 marks]

(c)	(i)	$t = 2d^{2/3} + 3$	
		Mean $d = 59$	(M1)
		Mean $t \approx 2 \times (59)^{2/3} + 3$	(M1)
		≈ 33.3 min. (3 s.f.) (accept 33.2)	(A1)
	(ii)	$t > 37 \Longrightarrow 2d^{2/3} + 3 > 37$	(M1)
		$2d^{2/3} > 34$	
		$d^{2/3} > 17$	(A1)
		$d > (17)^{3/2}$	
		d > 70.1	
		From the graph, when $d = 70.1$, $n = 82$	(A1)
		number of shoppers $= 134 - 82$	(A1)
		= 52	(A1)
			[0

[8 marks] Total [15 marks]

(b)

x = 2.31

OR

(A5)

Notes:	: Award (A1) for appropriate scales marked on the axes.					
	Award (A1) for the x-intercepts at $(\pm 2.3, 0)$.					
	Award (A1) for the maximum and minimum points at $(\pm 1.25, \pm 1.73)$.					
	Award (A1) for the end points at $(\pm 3, \pm 2.55)$.					
	Award (A1) for a smooth curve.					
	Allow some flexibility, especially in the middle three marks here.					

[5 marks] (A1)

(c)
$$\int (\pi \sin x - x) dx = -\pi \cos x - \frac{x^2}{2} + C$$
 (A1)(A1)

Note: Do not penalise for the absence of *C*.

Required area =
$$\int_0^1 (\pi \sin x - x) dx$$
 (M1)

$$= 0.944$$
 (G1)

area
$$= 0.944$$
 (G2)

[4 marks]

Total [10 marks]

M00/520/S(2)M

5. (a)
$$\binom{18}{24} = 30 \text{ km h}^{-1}$$
 (A1)

$$\begin{vmatrix} 36 \\ -16 \end{vmatrix} = \sqrt{36^2 + (-16)^2} = 39.4 \text{ km h}^{-1}$$
(A1)

(b) (i) After $\frac{1}{2}$ hour, position vectors are

$$\begin{pmatrix} 9\\12 \end{pmatrix} \text{ and } \begin{pmatrix} 18\\-8 \end{pmatrix} \tag{A1)(A1)$$

(ii) At 6.30 a.m., vector joining their positions is

$$\begin{pmatrix} 9\\12 \end{pmatrix} - \begin{pmatrix} 18\\-8 \end{pmatrix} = \begin{pmatrix} -9\\20 \end{pmatrix} (or \begin{pmatrix} 9\\-20 \end{pmatrix})$$
(M1)

$$\begin{pmatrix} -9\\20 \end{pmatrix}$$
 (M1)

$$=\sqrt{481}$$
 (= 21.9 km to 3 s.f.) (A1)

[5 marks]

(c) The Toyundai must continue until its position vector is
$$\begin{pmatrix} 18 \\ k \end{pmatrix}$$
 (M1)

Clearly $k = 24$, <i>i.e.</i> position vector $\begin{pmatrix} 18\\ 24 \end{pmatrix}$	(A1)
To reach this position, it must travel for 1 hour in total.	(A1)

To reach this position, it must travel for 1 hour in total. Hence the crew starts work at 7.00 a.m.

[4 marks]

(A1)

- (d)Southern (Chryssault) crew lays $800 \times 5 = 4000$ m(A1)Northern (Toyundai) crew lays $800 \times 4.5 = 3600$ m(A1)Total by 11.30 a.m. = 7.6 km(A1)
 - Their starting points were 24 (-8) = 32 km apart(A1)Hence they are now 32 7.6 = 24.4 km apart(A1)

[4 marks]

Question 5 continued

(e) Position vector of Northern crew at 11.30 a.m. is

$$\binom{18}{24-3.6} = \binom{18}{20.4}$$
(M1)(A1)

Distance to base camp =
$$\begin{vmatrix} 18\\20.4 \end{vmatrix}$$
 (A1)

= 27.2 km

Time to cover this distance =
$$\frac{27.2}{30} \times 60$$
 (A1)
= 54.4 minutes

= 54 minutes (to the nearest minute) (A1)

[5 marks]

Total [20 marks]

6. (i) (a) Let X be the lifespan in hours

$$X \sim N(57, 4.4^2)$$

(i) $a = -0.455$ (3 s.f.)
 $b = 0.682$ (3 s.f.)
(ii) (a) $P(X > 55) = P(Z > -0.455)$
 $= 0.675$
(A1)

(b)
$$P(55 \le X \le 60) = P\left(\frac{2}{4.4} \le Z \le \frac{3}{4.4}\right)$$

 $\approx P(0.455 \le Z \le 0.682)$
 $\approx 0.6754 + 0.752 - 1$ (A1)
 $= 0.428 (3 \text{ s.f.})$ (A1)

OR

$$P(55 \le X \le 60) = 0.428 (3 \text{ s. f.})$$
 (G2)

[5 marks]

Question 6 continued

(M1)
(A1)
(A1)
(AG)
[3 marks]
(MI)
(A1)
[2 marks]
(A1)
(A1)
(A1)
[3 marks]
(R1) (A1)
[2 marks]
[3 [2

Question 6 continued

(a)	Usin	g a calculat	tor:						
	L ₁ L ₂	14 61	15 65	15 69	12 48	11 35	18 70		(M2)
	2								
	Usin	ives	(41)						
	with	a = 5027	= 4x + 0 = 5 ((3 s f)					(A1) (G1)
	b = -13.216 = -13.2 (3 s. f)								(G1) (G1)
	OR								
		y = 5.03x	-13.2						(G3)
									[5 marks]
(b)	y = a	ax + b with	x = 13 gi	ves					(M1)
	y = 13(5.027) - 13.216								(A1)
			(A1)						
									[3 marks]
(c)		<i>r</i> =	0.90469.						(G1)
		=	0.905 (3	s.f.)					(G1)
									[2 marks]
Not	Note: Some students may use the results $\Sigma y = na + b\Sigma x$, $\Sigma xy = a\Sigma x + b\Sigma x^2$ leading to 348 = 6a + 85b, 5085 = 85a + 1235b. Students attempting to							$+b\Sigma x^2$,	
								pting to	
	fi	nd a, b us	ing this r	nethod sh	nould be a	warded g	enerous mar	ks, <i>e.g</i> .	
	tr	iese 2 equat	ions shou	ia be give	en 3 of the	marks in	part (a).		

Total [30 marks]

7.

(i)

(a)

$$y = e^{2x} \cos x$$

$$\frac{dy}{dx} = e^{2x} (-\sin x) + \cos x (2e^{2x})$$
(A1)(M1)

$$=e^{2x}(2\cos x - \sin x) \tag{AG}$$

(b)
$$\frac{d^2 y}{dx^2} = 2e^{2x}(2\cos x - \sin x) + e^{2x}(-2\sin x - \cos x)$$

$$= e^{2x}(4\cos x - 2\sin x - 2\sin x - \cos x)$$

$$= e^{2x}(3\cos x - 4\sin x)$$
(A1)
(A1)
(A1)

$$4\sin x \tag{A1}$$

[4 marks]

(c) (i) At P,
$$\frac{d^2 y}{dx^2} = 0$$
 (R1)
 $\Rightarrow 3\cos x = 4\sin x$ (M1)

$$\Rightarrow \tan x = \frac{3}{4}$$

$$x = a \quad i \quad a \quad a = \frac{3}{4}$$
(A1)

At P,
$$x = a$$
, *i.e.* $\tan a = \frac{3}{4}$ (A1)

(ii) The gradient at any point =
$$e^{2x}(2\cos x - \sin x)$$
 (M1)
Therefore, the gradient at P = $e^{2a}(2\cos a - \sin a)$
When ten $x = \frac{3}{2}\cos x = \frac{4}{4}\sin x = \frac{3}{2}$ (A1)(A1)

When
$$\tan a = \frac{1}{4}$$
, $\cos a = \frac{1}{5}$, $\sin a = \frac{1}{5}$ (A1)(A1)

(by drawing a right triangle, or by calculator)

Therefore, the gradient at
$$P = e^{2a} \left(\frac{8}{5} - \frac{3}{5} \right)$$
 (A1)

$$=e^{2a} \tag{A1}$$

[8 marks] (A1)(A1)

From the table, there are solutions in [-3, -2], [1, 2](ii) (a)

[2 marks]

(b)
$$2x^3 - 9x + 3 = 0$$

 $\Rightarrow 9x = 2x^3 + 3$ (A1)
 $x = \frac{2x^3 + 3}{9}$ (AG)

and

$$2x^{3} = 9x - 3$$

$$x^{3} = \frac{9x - 3}{2}$$
(A1)

$$x = \sqrt[3]{\frac{9x - 3}{2}}$$
 (AG)

[2 marks]

continued...

Question 7(ii) continued

(i)
$$x = 0.342241$$
 (G1)
Requires 6 iterations (accept any number from 5 to 9) (A1)

(ii)
$$g(x) = \frac{2x^3 + 3}{9}$$

 $g'(x) = \frac{6x^2}{9} = \frac{2x^2}{3}$ (M1)

$$g'(-3) = 6$$
 and $g'(-2) = \frac{8}{3}$ (M1)

Since
$$|g'(x)| > 1$$
 in $[-3, -2]$, $g(x)$ will not converge in $[-3, -2]$. (R1)

Similarly,
$$g'(1) = \frac{2}{3}$$
 and $g'(2) = \frac{8}{3}$ (M1)

g(x) will not converge, and if it does (near x = 1) it will give the same root as in part (i).

[5 marks]

(R1)

(iii)	Gradient of $y = x$ is 1	(A1)
	It is clear from the graphs that at a and c, the gradient of $h(x)$ is less	
	than 1, whereas at b it is greater than 1.	(A1)
	Hence, $h(x)$ will give the solutions <i>a</i> and <i>c</i> , but not the solution at <i>b</i> .	(R1)
		[3 marks]
(iv)	Solutions: -2.27163, 1.92939 (6 s.f.)	(G2)

(iv) Solutions: -2.27163, 1.92939 (6 s.f.)

Note: Award (G2) for 1 correct solution. Award (G1) for a correct solution that is not correct to 6 s.f.

[2 marks]

Total [30 marks]

- 16 -

8. (i) (a)
$$R = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
 (A1)

$$\boldsymbol{S} = \begin{pmatrix} \sqrt{2} & 0\\ 0 & \sqrt{2} \end{pmatrix} \tag{A1}$$

$$T = RS$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$$
(M1)

$$= \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
(A1)

[4 marks]

Since (0, 0) is invariant under *T*, we need consider only one point on y = 2x(b) (M1) Take $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ for example. $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ (M1) The line joining (0, 0) and (-1, 3) has equation y = -3x(A1)

[3 marks]

(ii)
$$\boldsymbol{\varrho} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x + y \end{pmatrix}$$

 $\Rightarrow \boldsymbol{\varrho} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and } \boldsymbol{\varrho} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
(M1)(M1)
 $\Rightarrow \boldsymbol{\varrho} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$
(A1)

OR

OR
Let
$$Q = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

Then $\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x + y \end{pmatrix}$ (M1)
 $\Rightarrow ax + cy = x - y$
 $bx + dy = x + y$ (M1)

$$\Rightarrow a = 1 \quad c = -1$$

$$b = 1 \quad d = 1$$

$$(1 \quad -1)$$

$$\boldsymbol{\mathcal{Q}} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \tag{A1}$$

[3 marks] continued...

Question 8 continued

(iii) (a) Matrix is
$$MN$$
 (M1)
= $\begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 1 & -1 \end{pmatrix}$
= $\begin{pmatrix} -1 & 7 \\ 1 & 8 \end{pmatrix}$ (A1)

(b) (i)
$$\begin{pmatrix} -1 & 7 \\ 1 & 8 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 [2 marks]

(Or from definition of linear transformation)

[1 mark]

(M1)

(ii)
$$a = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

 $a' = \begin{pmatrix} -1 & 7 \\ 1 & 8 \end{pmatrix} \begin{pmatrix} 6 \\ -4 \end{pmatrix} = \begin{pmatrix} -34 \\ -26 \end{pmatrix}$ (M1)

A' has coordinates (-34, -26) (A1)

[2 marks]

(iii)
$$\begin{pmatrix} -1 & 7\\ 1 & 8 \end{pmatrix} \boldsymbol{b} = \begin{pmatrix} -15\\ 0 \end{pmatrix}$$

$$\Rightarrow \boldsymbol{b} = \begin{pmatrix} -1 & 7\\ 1 & 8 \end{pmatrix}^{-1} \begin{pmatrix} -15\\ 0 \end{pmatrix}$$
(M1)

$$= -\frac{1}{15} \begin{pmatrix} 8 & -7 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} -15 \\ 0 \end{pmatrix}$$
(A1)
$$= -\frac{1}{15} \begin{pmatrix} -120 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} -120 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 8 \\ -1 & -$$

$$= -\frac{1}{15} \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix}$$

B has coordinates (8, -1) (A1)

OR

Solve
$$-x + 7y = -15$$

 $x + 8y = 0$ (M1)
 $\Rightarrow x = 8, y = -1$ (A1)
B has coordinates (8, -1) (A1)

continued...

- 18 -

Question 8(iii)(b) continued

(iv) OABC is a parallelogram

$$\Rightarrow \overrightarrow{OA} = -\overrightarrow{BC}$$

$$a = b - c$$

$$c = b - a$$

$$= \begin{pmatrix} 8 \\ -1 \end{pmatrix} - \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$
(M1)

$$= \begin{pmatrix} 2\\ 3 \end{pmatrix}$$

$$c' = \begin{pmatrix} -1 & 7\\ 1 & 9 \end{pmatrix} \begin{pmatrix} 2\\ 2 \end{pmatrix}$$
(A1)

$$= \begin{pmatrix} 1 & 8 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$$

$$= \begin{pmatrix} 19 \\ 26 \end{pmatrix}$$
(A1)

(v)
$$\mathbf{a} \cdot \mathbf{c} = \begin{pmatrix} 6 \\ -4 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

= 0
 \Rightarrow a perpendicular to c (M1)

$$\Rightarrow$$
 OABC is a rectangle (R1)

$$a' \cdot c' = \begin{pmatrix} -34 \\ -26 \end{pmatrix} \begin{pmatrix} 19 \\ 26 \end{pmatrix}$$

$$\neq 0 \qquad (M1)$$

$$\Rightarrow O'A'B'C' \text{ is not a rectangle} \qquad (R1)$$

[4 marks]

(vi) Area OABC =
$$|a||c|$$
 since it is a rectangle(M1) $= \sqrt{52}\sqrt{13}$ (A1) $= 26$ sq units(A1)

Area O'A'B'C' =
$$\left| \det \begin{pmatrix} -1 & 7 \\ 1 & 8 \end{pmatrix} \right| \times 26$$
 (M1)
= 15 × 26
= 390 sq units (A1)

(A1)

[5 marks]

Total [30 marks]