

MARKSCHEME

May 2000

MATHEMATICAL METHODS

Standard Level

Paper 1

(M1)

(A1)

$T_2 = 5 + \frac{35}{3}$	(A1)	
$=16\frac{2}{3} \text{ or } \frac{50}{3} \text{ or } 16.7 (3 \text{ s.f.})$	(A1)	(C4)
		[4 marks]
(a) $f^{-1}(2) \Rightarrow 3x + 5 = 2$ x = -1	(M1) (A1)	(C2)
(b) $g(f(-4)) = g(-12+5)$ = $g(-7)$	(A1)	
= 2(1+7) = 16	(A1)	(C2)

(a)		Boy	Girl	Total
	TV	13	25	38
	Sport	33	29	62
	Total	46	54	100

$$P(TV) = \frac{38}{100}$$
 (A1) (C2)

(b)
$$P(TV|Boy) = \frac{13}{46} (= 0.283 \text{ to } 3 \text{ s.f.})$$

a = 5

a + 3d = 40 (may be implied)

 $d = \frac{35}{3}$

1.

2.

3.

Notes: Award (A1) for numerator and (A1) for denominator. Accept equivalent answers.

[4 marks]

(C2)

(A2)

4.	u + v = 4i + 3j	(A1)
	Then $a(4i+3j) = 8i+(b-2)j$	
	4a = 8	
	3a = b - 2	<i>(A1)</i>
	Whence $a = 2$	(A1) (C2)
	b=8	(A1) (C2)

5. (a)
$$\log_2 5 = \frac{\log_a 5}{\log_a 2}$$
 (M1)
 $= \frac{y}{x}$ (A1) (C2)

(b)
$$\log_a 20 = \log_a 4 + \log_a 5 \text{ or } \log_a 2 + \log_a 10$$
 (M1)
= $2\log_a 2 + \log_a 5$
= $2x + y$ (A1) (C2)

6.
$$3\cos x = 5\sin x$$

$$\Rightarrow \frac{\sin x}{\cos x} = \frac{3}{5}$$
(M1)

$$\Rightarrow \tan x = 0.6$$
(A1)

$$x = 31^{\circ} \text{ or } x = 211^{\circ} \text{ (to the nearest degree)}$$
(A1)(A1) (C2)(C2)

Note: D	educt [1 mark]	if there are more than two answ	ers.
---------	----------------	---------------------------------	------

[4 marks]

7.	Required vector will be parallel to $\begin{pmatrix} 3 \\ -1 \end{pmatrix} - \begin{pmatrix} -1 \\ 4 \end{pmatrix}$	<i>(M1)</i>
	$=\begin{pmatrix}4\\-5\end{pmatrix}$	(A1)
	Hence required equation is $\mathbf{r} = \begin{pmatrix} -1 \\ 4 \end{pmatrix} + t \begin{pmatrix} 4 \\ -5 \end{pmatrix}$	(A1)(A1)

Hence required equation is $r = \begin{pmatrix} 4 \end{pmatrix} + t \begin{pmatrix} -5 \end{pmatrix}$

Note: Accept alternative answers, *e.g.* $\begin{pmatrix} 3 \\ -1 \end{pmatrix} + s \begin{pmatrix} 4 \\ -5 \end{pmatrix}$.

[4 marks]

(C4)

8.	$y = x^2 - x$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 1 = \text{gradient at any point.}$	<i>(M1)</i>
	Line parallel to $y=5x$	
	$\Rightarrow 2x - 1 = 5$	(M1)
	<i>x</i> =3	(A1)
	y=6	(A1)
	Point (3, 6)	(C2)(C2)

M00/520/S(1)M

9.
$$f'(x) = \cos x \Rightarrow f(x) = \sin x + C$$

$$f\left(\frac{\pi}{2}\right) = -2 \Rightarrow -2 = \sin\left(\frac{\pi}{2}\right) + C$$

$$C = -3$$

$$f(x) = \sin x - 3$$
(M1)
(M1)
(C4)

[4 marks]

10.
$$S = \frac{u_1}{1-r} = \frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$$
 (M1)(A1)
 $= \frac{2}{3} \times \frac{3}{5}$ (A1)
 $= \frac{2}{5}$ (A1)

[4 marks]

(C4)

11.
$$(a+b)^{12}$$

Coefficient of a^5b^7 is $\begin{pmatrix} 12\\5 \end{pmatrix} = \begin{pmatrix} 12\\7 \end{pmatrix}$
= 792 (A2) (C4)

[4 marks]

12.
$$\sin A = \frac{5}{13} \Rightarrow \cos A = \pm \frac{12}{13}$$
 (A1)
But A is obtuse $\Rightarrow \cos A = -\frac{12}{13}$ (A1)
 $\sin 2A = 2 \sin A \cos A$ (M1)
 $= 2 \times \frac{5}{13} \times \left(-\frac{12}{13}\right)$
 $= -\frac{120}{169}$ (A1) (C4)

13.	$4x^2 + 4kx + 9 = 0$		
	Only one solution $\Rightarrow b^2 - 4ac = 0$	(M1)	
	$16k^2 - 4(4)(9) = 0$	(A1)	
	$k^2 = 9$		
	$k = \pm 3$	(A1)	
	But given $k > 0$, $k = 3$	(A1)	(C4)

OR

One solution $\Rightarrow (4x^2 + 4kx + 9)$ is a perfect square	(M1)	
$4x^2 + 4kx + 9 = (2x \pm 3)^2$ by inspection	<i>(A2)</i>	
given $k > 0$, $k = 3$	<i>(A1)</i>	<i>(C4)</i>

[4 marks]

14.	(a)	C has equation $x = 2^{y}$ <i>i.e.</i> $y = \log_2 x$	(A1) (A1)	(C2)

- **OR** Equation of B is $x = \log_2 y$ (A1)Therefore equation of C is $y = \log_2 x$ (A1)(C2)
- (b) Cuts x-axis $\Rightarrow \log_2 x = 0$ $x = 2^{\circ}$ (A1) x = 1Point is (1,0) (A1) (C2)

15.	(a)	$\frac{f(5+h) - f(5)}{h} = \frac{(5.1)^3 - 5^3}{0.1}$ = 76.51 (or 76.5 to 3 s.f.)	(A1)	(C1)
	(b)	$\lim_{h \to 0} \frac{f(5+h) - f(5)}{h} = f'(5)$	(M1)	
		$= 3(5)^2$ = 75	(A1) (A1)	(C3)
				[4 marks]