MARKSCHEME

May 2000

MATHEMATICAL METHODS

Standard Level

Paper 1

1. $a=5$

$$
\begin{aligned}
a+3 d & =40(\text { may be implied }) \\
d & =\frac{35}{3} \\
T_{2} & =5+\frac{35}{3} \\
& =16 \frac{2}{3} \text { or } \frac{50}{3} \text { or } 16.7 \text { (3 s.f.) }
\end{aligned}
$$

2.

(a) $f^{-1}(2) \Rightarrow 3 x+5=2$
(M1) $x=-1$ (A1)
(b) $\quad g(f(-4))=g(-12+5)$

$$
\begin{align*}
& =g(-7) \tag{A1}\\
& =2(1+7) \\
& =16 \tag{C2}
\end{align*}
$$

(A1)

$$
(C 2)
$$

[4 marks]
3. (a)

	Boy	Girl	Total
TV	$\mathbf{1 3}$	$\mathbf{2 5}$	$\mathbf{3 8}$
Sport	33	29	$\mathbf{6 2}$
Total	46	$\mathbf{5 4}$	100

$$
\begin{equation*}
\mathrm{P}(\mathrm{TV})=\frac{38}{100} \tag{A1}
\end{equation*}
$$

(b) $\quad \mathrm{P}(\mathrm{TV} \mid \mathrm{Boy})=\frac{13}{46}(=0.283$ to 3 s.f. $)$

Notes: Award (A1) for numerator and (A1) for denominator. Accept equivalent answers.
4.

$$
\begin{align*}
& \qquad \boldsymbol{u}+\boldsymbol{v}=4 \boldsymbol{i}+3 \boldsymbol{j} \tag{A1}\\
& \text { Then } a(4 \boldsymbol{i}+3 \boldsymbol{j})=8 \boldsymbol{i}+(b-2) \boldsymbol{j} \\
& \qquad \begin{aligned}
& 4 a=8 \\
& 3 a=b-2 \\
& \text { Whence } \quad \begin{aligned}
&
\end{aligned} \\
&=2 \\
& b=8
\end{aligned}
\end{align*}
$$

(A1)
5. (a) $\log _{2} 5=\frac{\log _{a} 5}{\log _{a} 2}$
(M1)

$$
\begin{equation*}
=\frac{y}{x} \tag{A1}
\end{equation*}
$$

(b) $\log _{a} 20=\log _{a} 4+\log _{a} 5$ or $\log _{a} 2+\log _{a} 10$
(M1)

$$
\begin{align*}
& =2 \log _{a} 2+\log _{a} 5 \\
& =2 x+y \tag{C2}
\end{align*}
$$

(A1)
[4 marks]
6. $\quad 3 \cos x=5 \sin x$

$$
\Rightarrow \frac{\sin x}{\cos x}=\frac{3}{5}
$$

(M1)

$$
\Rightarrow \tan x=0.6
$$

$$
(A 1)
$$

$$
x=31^{\circ} \text { or } x=211^{\circ} \text { (to the nearest degree) }
$$

(A1)(A1)

Note: Deduct [1 mark] if there are more than two answers.
7. Required vector will be parallel to $\binom{3}{-1}-\binom{-1}{4}$
(M1)

$$
=\binom{4}{-5}
$$

(A1)
Hence required equation is $r=\binom{-1}{4}+t\binom{4}{-5}$
(A1)(A1)
(C4)

Note: Accept alternative answers, e.g. $\binom{3}{-1}+s\binom{4}{-5}$.
[4 marks]
8. $y=x^{2}-x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-1=$ gradient at any point.
(M1)
Line parallel to $y=5 x$

$$
\begin{array}{r}
\Rightarrow 2 x-1=5 \\
x=3
\end{array}
$$

(M1)

$$
(A 1)
$$

$$
y=6
$$

$$
(A 1)
$$

Point (3, 6)
(C2)(C2)
9. $f^{\prime}(x)=\cos x \Rightarrow f(x)=\sin x+C$
(M1)

$$
\begin{align*}
f\left(\frac{\pi}{2}\right)=-2 \Rightarrow-2 & =\sin \left(\frac{\pi}{2}\right)+C \\
C & =-3 \tag{A1}\\
f(x) & =\sin x-3
\end{align*}
$$ (A1)

(C4)
[4 marks]
10. $S=\frac{u_{1}}{1-r}=\frac{\frac{2}{3}}{1-\left(-\frac{2}{3}\right)}$
(M1)(A1)
(A1)
$=\frac{2}{3} \times \frac{3}{5}$
(A1)
[4 marks]
11. $(a+b)^{12}$

$$
\begin{aligned}
\text { Coefficient of } a^{5} b^{7} \text { is }\binom{12}{5} & =\binom{12}{7} \\
& =792
\end{aligned}
$$

(M1)(A1)
(A2) (C4)
[4 marks]
12. $\sin A=\frac{5}{13} \Rightarrow \cos A= \pm \frac{12}{13}$

$$
\begin{equation*}
\text { But } A \text { is obtuse } \Rightarrow \cos A=-\frac{12}{13} \tag{A1}
\end{equation*}
$$

$$
\begin{equation*}
\sin 2 A=2 \sin A \cos A \tag{A1}
\end{equation*}
$$

(M1)

$$
\begin{align*}
& =2 \times \frac{5}{13} \times\left(-\frac{12}{13}\right) \\
& =-\frac{120}{169} \tag{C4}
\end{align*}
$$

$$
(A 1)
$$

13. $4 x^{2}+4 k x+9=0$
$\begin{aligned} \text { Only one solution } \Rightarrow b^{2}-4 a c & =0 \\ 16 k^{2}-4(4)(9) & =0 \\ k^{2} & =9 \\ k & = \pm 3 \\ \text { But given } k>0, k & =3\end{aligned}$
(A1)

OR

$$
\begin{aligned}
& \text { One solution } \Rightarrow\left(4 x^{2}+4 k x+9\right) \text { is a perfect square } \\
& 4 x^{2}+4 k x+9=(2 x \pm 3)^{2} \text { by inspection } \\
& \text { given } k>0, \quad k=3
\end{aligned}
$$

14. (a) C has equation $x=2^{y}$
i.e. $y=\log _{2} x$
(A1)
OR Equation of B is $x=\log _{2} y$
Therefore equation of C is $y=\log _{2} x$
(A1)
(C2)
(b) Cuts x-axis $\Rightarrow \log _{2} x=0$

$$
\begin{align*}
& x=2^{\circ} \tag{A1}\\
& x=1
\end{align*}
$$

$$
\text { Point is }(1,0)
$$

(A1)
15. (a) $\frac{f(5+h)-f(5)}{h}=\frac{(5.1)^{3}-5^{3}}{0.1}$

$$
=76.51 \text { (or } 76.5 \text { to } 3 \text { s.f.) }
$$

(A1)
(C1)
(b) $\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}=f^{\prime}(5)$

$$
\begin{align*}
& =3(5)^{2} \tag{A1}\\
& =75
\end{align*}
$$

(A1)

