Paper A

IB HL Options Stats

1. [Maximum mark: 11]

A recent opinion poll in Holland found that only 350 out of 1400 people supported a new European Union resolution.
a) Calculate the unbiased estimate of the proportion, p, of the whole population that will support the resolution. [2 marks]
b) Calculate the standard error of your estimate. [3 marks]
c) Calculate a 99\% confidence interval for p. [4 marks]
d) State an assumption required to find this interval.[2 marks]
2. [Maximum mark: 13]

In a certain game 2 dice are thrown and their scores are added. If the score is five then the player wins a prize.
a) Show that the probability of getting a 5 is $\frac{1}{9}$. [1 marks]
b) Calculate the probability that the player,
(i) gets at least 1 five in his first 8 throws,
(ii) gets his five on his $7^{\text {th }}$ throw,
(iii) throws his second five on the $12^{\text {th }}$ throw. [10 marks]
c) On which throw he is most likely to get his first five?
[2 marks]
3. [Maximum mark: 9]

Mick has been told, by the doctor, to monitor the amount of beer he consumes. Mick believes that he drinks a mean average of 4 cans per day. To test this claim he kept a record for 10 days as follows:
$\begin{array}{llllllllll}3 & 5 & 6 & 8 & 4 & 4 & 3 & 3 & 4 & 4\end{array}$
You may assume that the amount of cans he drinks each day are normally distributed.
a) State a suitable hypotheses.
[2 marks]
b) Test Mick's belief, at the 5% level of significance. [5 marks]
c) Justify your choice of test.
[2 marks]
4. [Maximum mark: 12]

English A1 IB results are known to follow a normal distribution with a mean of 62% and a variance of 100% for the entire cohort. At Oldfield School 30 girls sat the A1 paper and their mean was 66%. The teachers believe that the girls at Oldfield school have a higher mean average than the cohort.

Carry out a hypothesis test to test this claim giving your conclusion at,
a) the 5% level of significance,
b) the 1% level of significance.

Paper A

IB HL Options Stats

5. [Maximum mark: 15]

The time it takes to complete a HL maths examination is thought to be modeled by the probability density function that is defined as $\left\{k\left(t^{2}-1\right), 1 \leq t \leq 3\right.$. t is the time take to complete the examination in hours.
a) Show that $\mathrm{k}=\frac{3}{20}$.
[2 marks]
b) A keen maths teacher studies the time taken for 50 students to complete the examination. He records his results into a table with 5 intervals as follows:

Time taken	$1<\mathrm{t}<1.5$	$1.5<\mathrm{t} \leq 2$	$2<\mathrm{t} \leq 2.4$	$2.4<\mathrm{t} \leq 2.8$	$2.8<\mathrm{t} \leq 3$
Students observed	4	10	18	10	8

Use the model above to complete a table of expected values for the 50 students using the time intervals above. [5 marks]
c) Perform a χ^{2} goodness of fit test at the 5% level of significance to test if the observed data fits the model.
[8 marks]

Paper A

IB HL Options Stats

Answers

1. a) $\mathrm{p}=\frac{1}{4}$
b) standard error $=0.01157$
c) $[0.2202,0.2798]$
d) Sample was random and unbiased
2.

b) i)
0.6103
ii) 0.0548
iii) 0.0418
C) $1^{\text {st }}$ throw.
3.
a) $\mathrm{H}_{0}: \mu=4$
and
$\mathrm{H}_{1}: \mu \neq 4$
b) $\bar{x}=4.4, S_{n-1}=1.5776$

$$
\begin{aligned}
& p=\frac{4.4-4}{1.5776}=0.253 \\
& v=9, t=2.262
\end{aligned}
$$

Do not reject H_{0}. The mean is 4 at the 95% level of significance.
c) A t-test is used as the sample is small and the variance of the population is unknown.
4. a) $\mathrm{H}_{0}: \mu=62$ and $\mathrm{H}_{1}: \mu>62$

$$
\text { standard error }=\frac{10}{\sqrt{30}}=1.826
$$

$$
\frac{x-62}{1.826}=1.6448 \quad x=65
$$

Reject H_{0}. At the 5\% level of significance the results at Oldfield are better than the entire cohort.
b) Accept H_{0}. At the 1% level of significance the results at Oldfield are better not better than the entire cohort.

Paper A

IB HL Options Stats

5. b)

Time taken	$1<\mathrm{t}<1.5$	$1.5<\mathrm{t} \leq 2$	$2<\mathrm{t} \leq 2.4$	$2.4<\mathrm{t} \leq 2.8$	$2.8<\mathrm{t} \leq 3$
Students expected	2.19	7.84	11.54	17.32	11.1

c) $\mathrm{p}=9.666$
$v=4, \chi^{2}=9.488$
Reject H_{0}, in favour of H_{1}. The distribution at the 5% level of significance does not fit the model put forward.

