1. [Maximum mark: 11]

A recent opinion poll in Holland found that only 350 out of 1400 people supported a new European Union resolution.

- a) Calculate the unbiased estimate of the proportion, *p*, of the whole population that will support the resolution. [2 marks]
- b) Calculate the standard error of your estimate. [3 marks]
- c) Calculate a 99% confidence interval for *p*. [4 marks]
- d) State an assumption required to find this interval. [2 marks]
- 2. [Maximum mark: 13]

In a certain game 2 dice are thrown and their scores are added. If the score is five then the player wins a prize.

- a) Show that the probability of getting a 5 is $\frac{1}{9}$. [1 marks]
- b) Calculate the probability that the player,
 - (i) gets at least 1 five in his first 8 throws,
 - (ii) gets his five on his 7th throw,
 - (iii) throws his second five on the 12th throw. [10 marks]
- c) On which throw he is most likely to get his first five? [2 marks]

3. [Maximum mark: 9]

Mick has been told, by the doctor, to monitor the amount of beer he consumes. Mick believes that he drinks a mean average of 4 cans per day. To test this claim he kept a record for 10 days as follows:

3 5 6 8 4 4 3 3 4 4

You may assume that the amount of cans he drinks each day are normally distributed.

- a) State a suitable hypotheses. [2 marks]
 b) Test Mick's belief, at the 5% level of significance. [5 marks]
 c) Justify your choice of test. [2 marks]
- 4. [Maximum mark: 12]

English A1 IB results are known to follow a normal distribution with a mean of 62% and a variance of 100% for the entire cohort. At Oldfield School 30 girls sat the A1 paper and their mean was 66%. The teachers believe that the girls at Oldfield school have a higher mean average than the cohort.

Carry out a hypothesis test to test this claim giving your conclusion at,

- a) the 5% level of significance,
- b) the 1% level of significance. [12 marks]

5. [Maximum mark: 15]

The time it takes to complete a HL maths examination is thought to be modeled by the probability density function that is defined as $\{k(t^2 - 1), 1 \le t \le 3, t \text{ is the time take to complete the examination in hours.}\}$

a) Show that
$$k = \frac{3}{20}$$
. [2 marks]

 A keen maths teacher studies the time taken for 50 students to complete the examination. He records his results into a table with 5 intervals as follows:

Time	1 < t < 1.5	$1.5 < t \leq 2$	$2 < t \le 2.4$	$2.4 < t \leq 2.8$	$2.8 < t \leq 3$
taken					
Students	4	10	18	10	8
observed					

Use the model above to complete a table of expected values for the 50 students using the time intervals above. [5 marks]

c) Perform a χ^2 goodness of fit test at the 5% level of significance to test if the observed data fits the model. [8 marks]

IB HL Options Stats

Answers

1. a) $p = \frac{1}{4}$

- b) standard error = 0.01157
- c) [0.2202, 0.2798]
- d) Sample was random and unbiased
- 2. b) i) 0.6103 ii) 0.0548 iii) 0.0418
 - c) 1st throw.

3. a)
$$H_0: \mu = 4$$
 and $H_1: \mu \neq 4$

b)
$$\overline{x} = 4.4, S_{n-1} = 1.5776$$

$$p = \frac{4.4 - 4}{1.5776} = 0.253$$

V = 9, t = 2.262

Do not reject H_0 . The mean is 4 at the 95% level of significance.

c) A t-test is used as the sample is small and the variance of the population is unknown.

4. a)
$$H_0: \mu = 62$$
 and $H_1: \mu > 62$

standard error = $\frac{10}{\sqrt{30}}$ = 1.826

 $\frac{x-62}{1.826} = 1.6448 \qquad x=65$

Reject H_0 . At the 5% level of significance the results at Oldfield are better than the entire cohort.

b) Accept H_0 . At the 1% level of significance the results at Oldfield are better not better than the entire cohort.

www.ibmaths.com

5. b)

Time	1 < <i>t</i> < 1.5	$1.5 < t \le 2$	$2 < t \le 2.4$	$2.4 < t \le 2.8$	$2.8 < t \leq 3$
taken					
Students	2.19	7.84	11.54	17.32	11.1
expected					

c) *p*=9.666

v=4, $\chi^2 = 9.488$

Reject H_0 , in favour of H_1 . The distribution at the 5% level of significance does not fit the model put forward.