As a guideline this paper should be completed in 1 hour.

No Calculator to be used in this examination.

Section A [36 marks]

Paper E

1. [Maximum mark 6]

If sin $A = \frac{2}{2}$ and A is obtuse, find the exact values of:

- a) cos A,
- b) sin 2A,
- c) tan 2A.
- 2. [Maximum mark 6]

$$Z_1 = (\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$$
 and $Z_2 = 3(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$, where $i = \sqrt{-1}$.

Write $z_1 \div z_2$ in the form $a(\cos x + i \sin x)$, where *a* and *x* are exact real numbers.

3. [Maximum mark 5]

Find the equation of the curve that passes through (1,-3) and has the differential equation,

$$\frac{dy}{dx} = \frac{y}{x \ln x}.$$

4. [Maximum mark 5]

If $f(x) = \ln(4 - 3x)$, find f''(x).

5. [Maximum mark 4]

The curve $y = 3x^4 - 4x^3$ has two turning points. Find each point and determine the nature of the turning point.

www.ibmaths.com

6. [Maximum mark 6]

A biased die is such that the probabilities of landing on each of the numbers from 1 to 6 is given below.

Score	1	2	3	4	5	6
Probability	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{6}$	X	X	X

- a) Find the value of *x*.
- b) Hence, find the mean expected score, E(x).
- c) Find the variance of the expected score, V(x).
- 7. [Maximum mark 4]

$$Z^{3} = 8\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right), \text{ where } i = \sqrt{-1}.$$

Find the solutions for z in the form $z = a(\cos \theta + i \sin \theta)$.

Paper E

Section B [24 marks]

- 8. [Maximum mark 24]
 - i) The line $\frac{x-2}{3} = \frac{2-y}{1} = \frac{z+1}{2}$ is reflected in x + y + z = 1. Find the equation of the line. [5 marks]
 - ii) A plane, π , contains the points A(2, 1, 4) and B(3, -2, -5).
 - a) Find the unit vector in the direction *AB*. [2 marks]
 - b) Show that the equation of the plane that contains the points A and B is π : [4 marks]
 - c) Hence, show that the point *C* with vertices () exists on the plane π . [1 mark]
 - d) Find the area of the triangle *ABC*. [4 marks]
 - e) The point *P* is in space defined as (1,3,5). Find the shortest distance from *P* to the plane π . [5 marks]
 - f) Find the angle between the plane π and the x plane. [3 marks]