Paper E

IB HL Paper 1 Practice Papers

As a guideline this paper should be completed in 1 hour.

No Calculator to be used in this examination.

Section A [36 marks]

1. [Maximum mark 6]

If $\sin A=\frac{2}{3}$ and A is obtuse, find the exact values of:
a) $\cos \mathrm{A}$,
b) $\sin 2 \mathrm{~A}$
c) $\tan 2 \mathrm{~A}$.
2. [Maximum mark 6]
$z_{1}=\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ and $z_{2}=3\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$, where $i=\sqrt{-1}$.
Write $z_{1} \div z_{2}$ in the form $a(\cos x+i \sin x)$, where a and x are exact real numbers.
3. [Maximum mark 5]

Find the equation of the curve that passes through (1,-3) and has the differential equation,

$$
\frac{d y}{d x}=\frac{y}{x \ln x} .
$$

4. [Maximum mark 5]

If $f(x)=\ln (4-3 x)$, find $f^{\prime \prime}(x)$.
5. [Maximum mark 4]

The curve $y=3 x^{4}-4 x^{3}$ has two turning points. Find each point and determine the nature of the turning point.

Paper E

IB HL Paper 1 Practice Papers
6. [Maximum mark 6]

A biased die is such that the probabilities of landing on each of the numbers from 1 to 6 is given below.

Score	1	2	3	4	5	6
Probability	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{6}$	x	x	x

a) Find the value of x.
b) Hence, find the mean expected score, $\mathrm{E}(\mathrm{x})$.
c) Find the variance of the expected score, $\mathrm{V}(\mathrm{x})$.
7. [Maximum mark 4]

$$
z^{3}=8\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right), \text { where } i=\sqrt{-1} .
$$

Find the solutions for z in the form $z=a(\cos \theta+i \sin \theta)$.

Paper E

IB HL Paper 1 Practice Papers

Section B [24 marks]

8. [Maximum mark 24]
i) The line $\frac{x-2}{3}=\frac{2-y}{1}=\frac{z+1}{2}$ is reflected in $x+y+z=1$. Find the equation of the line.
[5 marks]
ii) A plane, π, contains the points $A(2,1,4)$ and $B(3,-2,-5)$.
a) Find the unit vector in the direction $A B$. [2 marks]
b) Show that the equation of the plane that contains the points A and B is π :
[4 marks]
c) Hence, show that the point C with vertices () exists on the plane π.
[1 mark]
d) Find the area of the triangle $A B C$.
[4 marks]
e) The point P is in space defined as $(1,3,5)$. Find the shortest distance from P to the plane π. [5 marks]
f) Find the angle between the plane π and the x plane.
[3 marks]
