Paper D

IB HL Paper 1 Practice Papers

As a guideline, this paper should be completed in 1 hour.

No Calculator to be used in this examination.

Section A [38 marks]

1. [Maximum mark 6]

Find the area of the triangle that has vertices $(2,1,1),(4,2,1)$, and (-3,2,-1).
2. [Maximum mark 6]

Solve the differential equation $\frac{d y}{d x}=y^{2}\left(1+x^{2}\right)$, given that $x=-3$ when $y=1$. Give your answer in the form $y=f(x)$.
3. [Maximum mark 6]

Find the Cartesian equation of the straight line that is formed at the intersection of the planes:

$$
\pi_{1}: 3 x-y+z=-2 \text { and } \pi_{2}: 2 x+y-2 z=1
$$

4. [Maximum mark 6]

The curve $y=x^{3}+a x^{2}+b x+1$ at the point $(2,7)$ has the tangent $y=17 x-27$.

Find the values of a and b.
5. [Maximum mark 4]

The complex number z satisfies the equation, $i z+4=(2-i)$
where z is in the form $(a+i b)$, and $i=\sqrt{-1}$.
Find z in the form $\mathrm{a}+\mathrm{ib}$, where a and b are real.

Paper D

IB HL Paper 1 Practice Papers

6. [Maximum mark 5]

Find $\int\left(x^{2} \sin x\right) d x$.
7. [Maximum mark 5]

The function $f(x)=x^{3}-a x^{2}-b x+30$ is exactly divisible by $(x-2)$ and leaves a remainder of 16 when divided by $(x-1)$.

Find the values of a and b.

Section B [22 marks]

8. [Maximum mark 22]
i) Write the complex number $r=\sqrt{3}-i$ in modulus and argument form.
[2 marks]
ii) Use De Moivre's theorem to show the identity,

$$
\tan 5 \theta \equiv \frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}
$$

[6 marks]
iii) $\quad z_{1}=5\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$ and $z_{2}=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$, where $i=\sqrt{1}$.
a) Find $\left(z_{1}\right)^{2} \times\left(z_{2}\right)^{3}$.
[4 marks]
b) Find $\frac{\left(z_{1}\right)^{3}}{\left(z_{2}\right)^{2}}$
[5 marks]
iv) If $z=\cos \theta+i \sin \theta$, prove that $z^{n}+\frac{1}{z^{n}}=2 \cos n \theta$. [5 marks]

Paper D

IB HL Paper 1 Practice Papers
Answers

1. $\frac{1}{2} \sqrt{69}$
2. $y=\frac{-3}{x+x^{3}-3}$
3. $(\mathrm{t}=) \frac{5 \mathrm{x}+1}{1}=\frac{5 \mathrm{y}+13}{8}=\frac{\mathrm{z}}{1}$ (or equivalent)
4. $a=3, b=-7$
5. $a=-1, b=-2$
6. $-x^{2} \cos x+2 x \sin x+2 \cos x+c$
7. $a=4, b=11$
8. i) $z=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
iii) a) $200\left(\cos \frac{7 \pi}{3}+i \sin \frac{7 \pi}{3}\right)$
b) $\frac{125}{4}\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)$
