Paper C

IB HL Paper 1 Practice Papers

As a guideline this paper should be completed in 1 hour.

No Calculator to be used in this examination.

Section A [26 marks]

1. [Maximum mark 5]

Given that $\mathbf{a}=\mathrm{i}+2 \mathrm{j}+\mathrm{k}$ and $\mathbf{b}=4 \mathrm{i}-3 \mathrm{j}+2 \mathrm{k}$ and $\mathbf{c}=2 \mathrm{i}-\mathrm{j}+3 \mathrm{k}$, find \mathbf{a}. (bxc).
2. [Maximum mark 5]

The complex number z satisfies $i(z+3)=3-4 z$, where $i=\sqrt{-1}$. Write z in the form $a+b i$, where a and b are real numbers.
3. [Maximum mark 4]

A die is biased such that the probability of it landing on a 4 is $\frac{1}{4}$.

The die is rolled 720 times. Let X be the number of 4 's obtained.
a) the expected value of X.
b) the standard deviation of X.
4. [Maximum mark 6]

Find the exact value of $\tan \theta$ given the equation $\frac{2}{\sin ^{2} \theta}-\frac{3}{\tan \theta}=7$ and that θ lies in the third quadrant.
5. [Maximum mark 6]

Find the equation of the tangent to the curve $y^{2}+2 x y=3 x^{2}+9$ at the point where $x=2$ and $y=3$.

Give your answer in the form $a x+b y+c=0$.

Paper C

IB HL Paper 1 Practice Papers

Section B [34 marks]

6. [Maximum mark 20]
i) a) Find the value of k in the following set of equations such that the equations have an infinite set of solutions.

$$
\begin{aligned}
& 2 x+y+4 z=k \\
& 2 x+5 y+7 z=3 \\
& 6 x-21 y-6 z=0
\end{aligned}
$$

[6 marks]
b) For this value of k find the general set of solutions for these equations.
[3 marks]
ii) Show that the following set of equations have no solutions,

$$
\begin{aligned}
& 2 x+y-3 z=4 \\
& 4 x+y+4 z=2 \\
& 2 x+5 y-43 z=30
\end{aligned} \quad \text { [4 marks] }
$$

iii) Show that the lines $\frac{x-1}{1}=\frac{y-3}{5}=\frac{z-4}{1}$ and $\frac{x-3}{1}=\frac{y-10}{2}=\frac{z-6}{1}$ intersect and find the coordinate at the point of intersection.
[7 marks]
7. [Maximum mark 14]
i) A sequence of numbers is such that,

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\ldots \ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

Prove the above statement by use of mathematical induction.
[5 marks]

Paper C

IB HL Paper 1 Practice Papers

ii) A factory starts by producing 50 widgets a week and each week will produce 6 more widgets than the previous week.
a) Show that it will produce 500 widgets in the $76^{\text {th }}$ week.
[2 marks]
b) The factory freezes production at 500 widgets per week after the $76^{\text {th }}$ week. Find the total produced number of widgets produced in the first 100 weeks of production.
[3 marks]
iii) Find the sum to infinity of the series $\frac{3}{4}, \frac{3}{10}, \frac{3}{25}, \frac{6}{125}, \ldots \ldots$
[4 marks]

Paper C

IB HL Paper 1 Practice Papers

Answers

1. -21
2. $z=\frac{9}{17}+i \frac{15}{17}$
3. a) 180
b) $3 \sqrt{15}$
4. $\tan \theta=\frac{2}{5}$
5. $3 x-5 y+9=0$
6. i) a) $\mathrm{k}=2$
b) $\quad(t=) \frac{5-8 x}{13}=\frac{3-4 y}{3}=\frac{z}{1}$ (or equivalent)
iii) $(2,8,5)$
7.

ii) a) $76^{\text {th }}$ term
b) 32900
iii) $\frac{5}{4}$

