Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Monday 8 May 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

The set A contains all positive integers less than 20 that are congruent to 3 modulo 4 . The set B contains all the prime numbers less than 20 .
(a) (i) Write down all the elements of A and all the elements of B.
(ii) Determine the symmetric difference, $A \Delta B$, of the sets A and B.
(b) The set C is defined as $C=\{7,9,13,19\}$.
(i) Write down all the elements of $A \cap B, A \cap C$ and $B \cup C$.
(ii) Hence by considering $A \cap(B \cup C)$, verify that in this case the operation \cap is distributive over the operation \cup.
2. [Maximum mark: 11]

The relation R is defined such that $a R b$ if and only if $4^{a}-4^{b}$ is divisible by 7 , where $a, b \in \mathbb{Z}^{+}$.
(a) (i) Show that R is an equivalence relation.
(ii) Determine the equivalence classes of R.

The equivalence relation S is defined such that $c S d$ if and only if $4^{c}-4^{d}$ is divisible by 6 , where $c, d \in \mathbb{Z}^{+}$.
(b) Determine the number of equivalence classes of S.
3. [Maximum mark: 13]

The function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ is defined by $f(x, y)=\left(2 x^{3}+y^{3}, x^{3}+2 y^{3}\right)$.
(a) Show that f is a bijection.
(b) Hence write down the inverse function $f^{-1}(x, y)$.
4. [Maximum mark: 16]

The binary operation * is defined by

$$
a * b=a+b-3 \text { for } a, b \in \mathbb{Z} .
$$

(a) Show that $\{\mathbb{Z}, *\}$ is an Abelian group.
(b) Show that there is no element of order 2 .
(c) Find a proper subgroup of $\{\mathbb{Z}, *\}$.

The binary operation \circ is defined by

$$
a \circ b=a+b+3 \text { for } a, b \in \mathbb{Z} .
$$

Consider the group $\{\mathbb{Z}, \circ\}$ and the bijection $f: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $f(a)=a-6$.
(d) Show that the groups $\{\mathbb{Z}, *\}$ and $\{\mathbb{Z}, \circ\}$ are isomorphic.

