Mathematics
 Higher level
 Paper 3 - discrete mathematics

Monday 8 May 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 16]
(a) Use the Euclidean algorithm to find the greatest common divisor of 264 and 1365.
(b) (i) Hence, or otherwise, find the general solution of the Diophantine equation

$$
264 x-1365 y=3
$$

(ii) Hence find the general solution of the Diophantine equation

$$
\begin{equation*}
264 x-1365 y=6 \tag{8}
\end{equation*}
$$

(c) By expressing each of 264 and 1365 as a product of its prime factors, determine the lowest common multiple of 264 and 1365.
2. [Maximum mark: 12]

The weights of the edges in the complete graph G are given in the following table.

	A	B	C	D	E	F
A	-	4	9	8	14	6
B	4	-	1	14	9	3
C	9	1	-	5	12	2
D	8	14	5	-	11	12
E	14	9	12	11	-	7
F	6	3	2	12	7	-

(a) Starting at A, use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for G.
(b) By first deleting vertex A, use the deleted vertex algorithm together with Kruskal's algorithm to find a lower bound for the travelling salesman problem for G.
3. [Maximum mark: 9]
(a) In the context of graph theory, explain briefly what is meant by
(i) a circuit;
(ii) an Eulerian circuit.
(b) The graph G has six vertices and an Eulerian circuit. Determine whether or not its complement G^{\prime} can have an Eulerian circuit.
(c) Find an example of a graph H, with five vertices, such that H and its complement H^{\prime} both have an Eulerian trail but neither has an Eulerian circuit. Draw H and H^{\prime} as your solution.
4. [Maximum mark: 13]

Consider the recurrence relation $a u_{n+2}+b u_{n+1}+c u_{n}=0, n \in \mathbb{N}$ where a, b and c are constants. Let α and β denote the roots of the equation $a x^{2}+b x+c=0$.
(a) Verify that the recurrence relation is satisfied by

$$
u_{n}=A \alpha^{n}+B \beta^{n},
$$

where A and B are arbitrary constants.
(b) Solve the recurrence relation
$u_{n+2}-2 u_{n+1}+5 u_{n}=0$ given that $u_{0}=0$ and $u_{1}=4$.

