Mathematics
 Higher level
 Paper 3 - calculus

Monday 8 May 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 7]

Use l'Hôpital's rule to determine the value of

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x \ln (1+x)}
$$

2. [Maximum mark: 6]

Let the Maclaurin series for $\tan x$ be

$$
\tan x=a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots
$$

where a_{1}, a_{3} and a_{5} are constants.
(a) Find series for $\sec ^{2} x$, in terms of a_{1}, a_{3} and a_{5}, up to and including the x^{4} term
(i) by differentiating the above series for $\tan x$;
(ii) by using the relationship $\sec ^{2} x=1+\tan ^{2} x$.
(b) Hence, by comparing your two series, determine the values of a_{1}, a_{3} and a_{5}.
3. [Maximum mark: 9]

Use the integral test to determine whether the infinite series $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$ is convergent or divergent.
4. [Maximum mark: 13]
(a) Consider the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f\left(\frac{y}{x}\right), x>0 .
$$

Use the substitution $y=v x$ to show that the general solution of this differential equation is

$$
\int \frac{\mathrm{d} v}{f(v)-v}=\ln x+\text { Constant } .
$$

(b) Hence, or otherwise, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}+3 x y+y^{2}}{x^{2}}, x>0,
$$

given that $y=1$ when $x=1$. Give your answer in the form $y=g(x)$.
5. [Maximum mark: 15]

Consider the curve $y=\frac{1}{x}, x>0$.
(a) By drawing a diagram and considering the area of a suitable region under the curve, show that for $r>0$,

$$
\frac{1}{r+1}<\ln \left(\frac{r+1}{r}\right)<\frac{1}{r} .
$$

(b) Hence, given that n is a positive integer greater than one, show that
(i) $\sum_{r=1}^{n} \frac{1}{r}>\ln (1+n)$;
(ii) $\sum_{r=1}^{n} \frac{1}{r}<1+\ln n$.

Let $U_{n}=\sum_{r=1}^{n} \frac{1}{r}-\ln n$.
(c) Hence, given that n is a positive integer greater than one, show that
(i) $\quad U_{n}>0$;
(ii) $U_{n+1}<U_{n}$.
(d) Explain why these two results prove that $\left\{U_{n}\right\}$ is a convergent sequence.

