Markscheme

May 2017

Mathematics

Higher level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2017". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A} 0$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {™ }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} 0$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but M marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. attempt at binomial expansion, relevant row of Pascal's triangle or use of general term with binomial coefficient must be seen
term independent of x is $\binom{10}{4}\left(2 x^{2}\right)^{6}\left(\frac{1}{2 x^{3}}\right)^{4}$ (or equivalent)
(A1)(A1)(A1)

Notes: x 's may be omitted.
Also accept $\binom{10}{6}$ or 210.
$=840$
A1
[5 marks]
2. (a) $-11 \leq f(x) \leq 21$

A1A1
Note: A1 for correct end points, A1 for correct inequalities.
(b) $f^{-1}(x)=\sqrt[3]{\frac{x-5}{2}}$
(M1)A1
[2 marks]
(c) $\quad-11 \leq x \leq 21,-2 \leq f^{-1}(x) \leq 2$

A1A1
[2 marks]
3. (a) EITHER
the first three terms of the geometric sequence are $9,9 r$ and $9 r^{2}$
$9+3 d=9 r(\Rightarrow 3+d=3 r)$ and $9+7 d=9 r^{2}$
attempt to solve simultaneously

$$
\begin{equation*}
9+7 d=9\left(\frac{3+d}{3}\right)^{2} \tag{A1}
\end{equation*}
$$

OR

the $1^{\text {st }}, 4^{\text {th }}$ and $8^{\text {th }}$ terms of the arithmetic sequence are
$9,9+3 d, 9+7 d$
$\frac{9+7 d}{9+3 d}=\frac{9+3 d}{9}$
attempt to solve

THEN

$$
\begin{equation*}
d=1 \tag{A1}
\end{equation*}
$$

[4 marks]
(b) $\quad r=\frac{4}{3}$

A1

Note: Accept answers where a candidate obtains d by finding r first. The first two marks in either method for part (a) are awarded for the same ideas and the third mark is awarded for attempting to solve an equation in r.
4. (a) $s=t+\cos 2 t$

$$
\begin{aligned}
& \frac{\mathrm{d} s}{\mathrm{~d} t}=1-2 \sin 2 t \\
& =0 \\
& \Rightarrow \sin 2 t=\frac{1}{2} \\
& t_{1}=\frac{\pi}{12}(s), t_{2}=\frac{5 \pi}{12}(s)
\end{aligned}
$$

Note: Award AOAO if answers are given in degrees.
(b) $\quad s=\frac{\pi}{12}+\cos \frac{\pi}{6}\left(s=\frac{\pi}{12}+\frac{\sqrt{3}}{2}(m)\right)$
5. C represents the complex number $1-2 \mathrm{i}$ A2
D represents the complex number $3+2 \mathrm{i}$ A2
6. (a) let $x=\tan \theta$

$$
\begin{align*}
& \Rightarrow \frac{\mathrm{d} x}{\mathrm{~d} \theta}=\sec ^{2} \theta \tag{A1}\\
& \int \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\int \frac{\sec ^{2} \theta}{\left(\tan ^{2} \theta+1\right)^{2}} \mathrm{~d} \theta
\end{align*}
$$

Note: The method mark is for an attempt to substitute for both x and $\mathrm{d} x$.

$$
\begin{aligned}
& =\int \frac{1}{\sec ^{2} \theta} \mathrm{~d} \theta \text { (or equivalent) } \\
& \text { when } x=0, \theta=0 \text { and when } x=1, \theta=\frac{\pi}{4} \\
& =\int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta \mathrm{~d} \theta
\end{aligned}
$$

(b) $\left(\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\int_{0}^{\frac{\pi}{4}} \cos ^{2} \theta \mathrm{~d} \theta\right)=\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(1+\cos 2 \theta) \mathrm{d} \theta$

$$
\begin{equation*}
=\frac{1}{2}\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{4}} \tag{A1}
\end{equation*}
$$

$$
=\frac{\pi}{8}+\frac{1}{4}
$$

7. (a) $\mathrm{P}(X>0)=1-\mathrm{P}(X=0)$
(M1)
$\Rightarrow 1-\mathrm{e}^{-m}=\frac{3}{4}$ or equivalent
A1
$\Rightarrow m=\ln 4$
(b) $\quad \mathrm{P}(Y>1)=1-\mathrm{P}(Y=0)-\mathrm{P}(Y=1)$
$=1-\mathrm{e}^{-2 \ln 4}-\mathrm{e}^{-2 \ln 4} \times 2 \ln 4$
(M1)
A1
recognition that $2 \ln 4=\ln 16$ (A1)
$\mathrm{P}(Y>1)=\frac{15-\ln 16}{16}$ A1
8. $\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{n-1}{2}=\binom{n}{3}$
show true for $n=3$
LHS $=\binom{2}{2}=1$ RHS $=\binom{3}{3}=1$
hence true for $n=3$
assume true for $n=k:\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{k-1}{2}=\binom{k}{3}$
consider for $n=k+1:\binom{2}{2}+\binom{3}{2}+\binom{4}{2}+\ldots+\binom{k-1}{2}+\binom{k}{2}$
$=\binom{k}{3}+\binom{k}{2}$
$=\frac{k!}{(k-3)!3!}+\frac{k!}{(k-2)!2!}\left(=\frac{k!}{3!}\left[\frac{1}{(k-3)!}+\frac{3}{(k-2)!}\right]\right)$ or any correct expression
with a visible common factor
$=\frac{k!}{3!}\left[\frac{k-2+3}{(k-2)!}\right]$ or any correct expression with a common denominator
$=\frac{k!}{3!}\left[\frac{k+1}{(k-2)!}\right]$
Note: At least one of the above three lines or equivalent must be seen.
$=\frac{(k+1)!}{3!(k-2)!}$ or equivalent
$=\binom{k+1}{3}$
Result is true for $k=3$. If result is true for k it is true for $k+1$. Hence result is true for all $k \geq 3$. Hence proved by induction.

Note: In order to award the R1 at least [5 marks] must have been awarded.

Section B

9. (a) (i)

A1 for correct shape
A1 for correct x and y intercepts and minimum point
(ii)

A1 for correct shape
A1 for correct vertical asymptotes
A1 for correct implied horizontal asymptote
A1 for correct maximum point
continued...

Question 9 continued
(iii)

A1 for reflecting negative branch from (ii) in the x-axis A1 for correctly labelled minimum point

(b) EITHER

attempt at integration by parts
$\int\left(x^{2}-a^{2}\right) \cos x \mathrm{~d} x=\left(x^{2}-a^{2}\right) \sin x-\int 2 x \sin x \mathrm{~d} x$
$=\left(x^{2}-a^{2}\right) \sin x-2\left[-x \cos x+\int \cos x \mathrm{~d} x\right]$ A1
$=\left(x^{2}-a^{2}\right) \sin x+2 x \cos x-2 \sin x+c$

OR

$\int\left(x^{2}-a^{2}\right) \cos x \mathrm{~d} x=\int x^{2} \cos x \mathrm{~d} x-\int a^{2} \cos x \mathrm{~d} x$ attempt at integration by parts
$\int x^{2} \cos x \mathrm{~d} x=x^{2} \sin x-\int 2 x \sin x \mathrm{~d} x$
$=x^{2} \sin x-2\left[-x \cos x+\int \cos x \mathrm{~d} x\right]$
$=x^{2} \sin x+2 x \cos x-2 \sin x$
$-\int a^{2} \cos x \mathrm{~d} x=-a^{2} \sin x$
$\int\left(x^{2}-a^{2}\right) \cos x \mathrm{~d} x=\left(x^{2}-a^{2}\right) \sin x+2 x \cos x-2 \sin x+c$

Question 9 continued
(c) $\quad g(x)=x\left(x^{2}-a^{2}\right)^{\frac{1}{2}}$

$$
g^{\prime}(x)=\left(x^{2}-a^{2}\right)^{\frac{1}{2}}+\frac{1}{2} x\left(x^{2}-a^{2}\right)^{-\frac{1}{2}}(2 x)
$$

M1A1A1
Note: Method mark is for differentiating the product. Award A1 for each correct term.
$g^{\prime}(x)=\left(x^{2}-a^{2}\right)^{\frac{1}{2}}+x^{2}\left(x^{2}-a^{2}\right)^{-\frac{1}{2}}$
both parts of the expression are positive hence $g^{\prime}(x)$ is positive R1
and therefore g is an increasing function (for $|x|>a$) AG
10. (a) (i) the width of the rectangle is $2 r$ and let the height of the rectangle be h $\mathrm{P}=2 r+2 h+\pi r$
$A=2 r h+\frac{\pi r^{2}}{2}$
$h=\frac{\mathrm{P}-2 r-\pi r}{2}$
$A=2 r\left(\frac{\mathrm{P}-2 r-\pi r}{2}\right)+\frac{\pi r^{2}}{2}\left(=\mathrm{P} r-2 r^{2}-\frac{\pi r^{2}}{2}\right)$
M1A1
(ii) $\frac{\mathrm{d} A}{\mathrm{~d} r}=\mathrm{P}-4 r-\pi r$
$\frac{\mathrm{d} A}{\mathrm{~d} r}=0$
M1
$\Rightarrow r=\frac{\mathrm{P}}{4+\pi}$
hence the width is $\frac{2 \mathrm{P}}{4+\pi}$
A1
$\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=-4-\pi<0$
R1
hence maximum
AG
[9 marks]
continued...

Question 10 continued
(b) EITHER

$$
\begin{array}{ll}
h=\frac{\mathrm{P}-2 r-\pi r}{2} \\
h & =\frac{\mathrm{P}-\frac{2 \mathrm{P}}{4+\pi}-\frac{\mathrm{P} \pi}{4+\pi}}{2} \\
h=\frac{4 \mathrm{P}+\pi \mathrm{P}-2 \mathrm{P}-\pi \mathrm{P}}{2(4+\pi)} & \boldsymbol{M 1} \\
h=\frac{\mathrm{P}}{(4+\pi)}=r & \boldsymbol{A 1}
\end{array}
$$

OR
$h=\frac{\mathrm{P}-2 r-\pi r}{2}$
$P=r(4+\pi)$
M1
$h=\frac{\mathrm{r}(4+\pi)-2 r-\pi r}{2}$
A1
$h=\frac{4 \mathrm{r}+\pi r-2 r-\pi r}{2}=r \quad \quad$ AG
[2 marks]
11. (a) $2 \sin \left(x+60^{\circ}\right)=\cos \left(x+30^{\circ}\right)$
$2\left(\sin x \cos 60^{\circ}+\cos x \sin 60^{\circ}\right)=\cos x \cos 30^{\circ}-\sin x \sin 30^{\circ}$
(M1)(A1)
$2 \sin x \times \frac{1}{2}+2 \cos x \times \frac{\sqrt{3}}{2}=\cos x \times \frac{\sqrt{3}}{2}-\sin x \times \frac{1}{2}$
$\Rightarrow \frac{3}{2} \sin x=-\frac{\sqrt{3}}{2} \cos x$
$\Rightarrow \tan x=-\frac{1}{\sqrt{3}}$
$\Rightarrow x=150^{\circ}$
A1
[5 marks]

(b) EITHER

choosing two appropriate angles, for example 60° and 45°
$\sin 105^{\circ}=\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ}$ and
$\cos 105^{\circ}=\cos 60^{\circ} \cos 45^{\circ}-\sin 60^{\circ} \sin 45^{\circ}$
$\sin 105^{\circ}+\cos 105^{\circ}=\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}}+\frac{1}{2} \times \frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}}$
$=\frac{1}{\sqrt{2}}$

OR

attempt to square the expression
$\left(\sin 105^{\circ}+\cos 105^{\circ}\right)^{2}=\sin ^{2} 105^{\circ}+2 \sin 105^{\circ} \cos 105^{\circ}+\cos ^{2} 105^{\circ}$ $\left(\sin 105^{\circ}+\cos 105^{\circ}\right)^{2}=1+\sin 210^{\circ}$
$=\frac{1}{2}$
$\sin 105^{\circ}+\cos 105^{\circ}=\frac{1}{\sqrt{2}}$
[3 marks]
continued...

Question 11 continued
(c) (i) EITHER

$$
\begin{array}{ll}
z=(1-\cos 2 \theta)-\mathrm{i} \sin 2 \theta & \\
|z|=\sqrt{(1-\cos 2 \theta)^{2}+(\sin 2 \theta)^{2}} & \\
|z|=\sqrt{1-2 \cos 2 \theta+\cos ^{2} 2 \theta+\sin ^{2} 2 \theta} & \boldsymbol{A 1} \\
=\sqrt{2} \sqrt{(1-\cos 2 \theta)} & \boldsymbol{A 1} \\
=\sqrt{2\left(2 \sin ^{2} \theta\right)} & \\
=2 \sin \theta & \boldsymbol{A 1}
\end{array}
$$

let $\arg (z)=\alpha$
$\tan \alpha=-\frac{\sin 2 \theta}{1-\cos 2 \theta}$
$=\frac{-2 \sin \theta \cos \theta}{2 \sin ^{2} \theta}$
$=-\cot \theta$ A1
$\arg (z)=\alpha=-\arctan \left(\tan \left(\frac{\pi}{2}-\theta\right)\right)$ A1
$=\theta-\frac{\pi}{2}$

OR

$z=(1-\cos 2 \theta)-\mathrm{i} \sin 2 \theta$
$=2 \sin ^{2} \theta-2 i \sin \theta \cos \theta$
M1A1
$=2 \sin \theta(\sin \theta-i \cos \theta)$
$=-2 i \sin \theta(\cos \theta+i \sin \theta)$
$=2 \sin \theta\left(\cos \left(\theta-\frac{\pi}{2}\right)+i \sin \left(\theta-\frac{\pi}{2}\right)\right)$
$|z|=2 \sin \theta$
A1
$\arg (z)=\theta-\frac{\pi}{2}$ A1

Question 11 continued
(ii) attempt to apply De Moivre's theorem

M1
$(1-\cos 2 \theta-i \sin 2 \theta)^{\frac{1}{3}}=2^{\frac{1}{3}}(\sin \theta)^{\frac{1}{3}}\left[\cos \left(\frac{\theta-\frac{\pi}{2}+2 n \pi}{3}\right)+\mathrm{i} \sin \left(\frac{\theta-\frac{\pi}{2}+2 n \pi}{3}\right)\right]$
A1A1A1
Note: $\boldsymbol{A} 1$ for modulus, $\boldsymbol{A} 1$ for dividing argument of z by 3 and $\boldsymbol{A 1}$ for $2 n \pi$.
Hence cube roots are the above expression when $n=-1,0,1$. Equivalent forms are acceptable.

