

Mathematics Higher level Paper 3 – sets, relations and groups

Wednesday 18 May 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 19]

The following Cayley table for the binary operation multiplication modulo 9, denoted by *, is defined on the set $S = \{1, 2, 4, 5, 7, 8\}$.

*	1	2	4	5	7	8
1	1	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8				
5	5	1				
7	7	5				
8	8	7				

(a) Copy and complete the table.

(b) Show that $\{S, *\}$ is an Abelian group.

[5]

[3]

(c) Determine the orders of all the elements of $\{S, *\}$.

[3]

- (d) (i) Find the two proper subgroups of $\{S, *\}$.
 - (ii) Find the coset of each of these subgroups with respect to the element 5.
- (e) Solve the equation 2 * x * 4 * x * 4 = 2.

[4]

[4]

2. [Maximum mark: 12]

The relation R is defined on \mathbb{Z}^+ such that aRb if and only if $b^n - a^n \equiv 0 \pmod{p}$ where n, p are fixed positive integers greater than 1.

(a) Show that R is an equivalence relation.

[7]

(b) Given that n = 2 and p = 7, determine the first four members of each of the four equivalence classes of R.

[5]

[5]

[8]

The group $\{G,*\}$ is Abelian and the bijection $f:G\to G$ is defined by $f(x)=x^{-1}$, $x\in G$. Show that f is an isomorphism.

-3-

4. [Maximum mark: 13]

The function f is defined by $f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \times \mathbb{R}^+$ where $f(x,y) = \left(\sqrt{xy}, \frac{x}{y}\right)$.

- (a) Prove that f is an injection.
- (b) (i) Prove that f is a surjection.
 - (ii) Hence, or otherwise, write down the inverse function f^{-1} .
- **5.** [Maximum mark: 9]

The group $\{G,*\}$ is defined on the set G with binary operation *. H is a subset of G defined by $H=\{x:x\in G,\,a*x*a^{-1}=x\text{ for all }a\in G\}$. Prove that $\{H,*\}$ is a subgroup of $\{G,*\}$.