

Mathematics Higher level Paper 3 – discrete mathematics

Wednesday 18 May 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

- 1. [Maximum mark: 9]
 - (a) Use the Euclidean algorithm to show that 1463 and 389 are relatively prime. [4]
 - (b) Find positive integers a and b such that 1463a 389b = 1. [5]

2. [Maximum mark: 12]

The weights of the edges in the complete graph G are shown in the following table.

	A	В	С	D	Е	F
A	_	14	10	8	12	9
В	14	_	9	12	10	13
C	10	9	_	7	8	13
D	8	12	7	_	9	11
Е	12	10	8	9	_	11
F	9	13	13	11	11	_

- (a) Starting at A, use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for G.
- (b) By first removing A, use the deleted vertex algorithm to find a lower bound for the travelling salesman problem for G.

[5]

[7]

[3]

3. [Maximum mark: 10]

Throughout this question, $(abc...)_n$ denotes the number abc... written with number base n. For example $(359)_n = 3n^2 + 5n + 9$.

(a) (i) Given that
$$(43)_n \times (56)_n = (3112)_n$$
, show that $3n^3 - 19n^2 - 38n - 16 = 0$.

- (ii) Hence determine the value of *n*.
- (b) Determine the set of values of *n* satisfying $(13)_n \times (21)_n = (273)_n$. [3]
- (c) Show that there are no possible values of *n* satisfying $(32)_n \times (61)_n = (1839)_n$. [4]
- 4. [Maximum mark: 17]
 - (a) Solve the recurrence relation $v_n + 4v_{n-1} + 4v_{n-2} = 0$ where $v_1 = 0, v_2 = 1$. [6]
 - (b) Use strong induction to prove that the solution to the recurrence relation $u_n 4u_{n-1} + 4u_{n-2} = 0$ where $u_1 = 0$, $u_2 = 1$ is given by $u_n = 2^{n-2}(n-1)$. [8]
 - (c) Find a simplified expression for $u_n + v_n$ given that,
 - (i) *n* is even.
 - (ii) *n* is odd. [3]

5. [Maximum mark: 12]

The simple, connected graph *G* has *e* edges and *v* vertices, where $v \ge 3$.

(a) Show that the number of edges in G', the complement of G, is $\frac{1}{2}v^2 - \frac{1}{2}v - e$. [2]

Given that both G and G' are planar and connected,

- (b) show that the sum of the number of faces in *G* and the number of faces in *G'* is independent of *e*;[3]
- (c) show that $v^2 13v + 24 \le 0$ and hence determine the maximum possible value of v. [7]

-3-