

Markscheme

May 2016

Mathematics

Higher level

Paper 2

23 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- **N** Marks awarded for **correct** answers if **no** working shown.
- **AG** Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance** for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by RM^{TM} Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, for example, *M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (for example, substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	sin x	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award **N** marks for **correct** answers where there is **no** working.

- Do **not** award a mixture of **N** and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets**, for example, **(M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (for example, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses one mark.

-5-

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (for example, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, *accept* equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation.

Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1.	$AC^2 = 7.8^2 + 10.4^2$	(M1)
	AC = 13	(A1)
	use of cosine rule <i>eg</i> , $\cos(ABC) = \frac{6.5^2 + 9.1^2 - 13^2}{2(6.5)(9.1)}$	M1
	$\hat{ABC} = 111.804^{\circ} (= 1.95134)$	(A1)
	$=112^{\circ}$	A1
		[5 marks]

2.	(a)	$P(0 \le X \le 2) = 0.242$	(M1)A1	[2 marks]
	(b)	METHOD 1		
		P(X > 1) = P(X < -1) + P(X > 1)	(M1)	
		= 0.02275 + 0.84134	(A1)	
		= 0.864	A1	
		METHOD 2		
		P(X > 1) = 1 - P(-1 < X < 1)	(M1)	
		= 1 - 0.13590	(A1)	
		= 0.864	A1	
				[3 marks]
	(C)	c = 3.30	(M1)A1	
				[2 marks]
			Total	[7 marks]

3. METHOD 1

$$\ln \frac{y}{x} = 2 \Longrightarrow -\ln x + \ln y = 2$$

$$\ln x^{2} + \ln y^{3} = 7 \Longrightarrow 2\ln x + 3\ln y = 7$$
(M1)A1

attempting to solve for x and y (to obtain
$$\ln x = \frac{1}{5}$$
 and $\ln y = \frac{11}{5}$) (M1)

$$x = e^{\frac{1}{5}} (= 1.22)$$
 A1
 $y = e^{\frac{11}{5}} (= 9.03)$ A1

METHOD 2

$$\ln \frac{y}{x} = 2 \Longrightarrow y = e^2 x$$
A1
$$\ln x^2 + \ln x^6 x^3 = 7$$

$$\ln x^{2} + \ln e^{6}x^{3} = 7$$
(M1)A1
attempting to solve for x
(M1)
$$x = e^{\frac{1}{5}} (= 1.22)$$
A1

$$y = e^{\frac{11}{5}} (= 9.03)$$
 A1

METHOD 3

$$\ln\frac{y}{x} = 2 \Longrightarrow y = e^2 x$$
 A1

$$\ln x^2 + \ln y^3 = 7 \Longrightarrow \ln \left(x^2 y^3 \right) = 7$$
A1

$$x^2 y^3 = e^7$$
 (M1)

substituting
$$y = e^2 x$$
 into $x^2 y^3 = e^7$ (to obtain $e^6 x^5 = e^7$) M1

$$x = e^{\frac{1}{5}}$$
 (= 1.22) A1

$$y = e^{\frac{1}{5}}$$
 (= 9.03) **A1**

[6 marks]

A1

 $ar + ar^2 = 96$ 4.

Note: Award **A1** for any valid equation involving *a* and *r*, *eg*, $\frac{a(1-r^3)}{1-r} - a = 96$.

$$\frac{a}{1-r} = 500$$

EITHER

attempting to eliminate *a* to obtain $500r(1 - r^2) = 96$ (or equivalent in unsimplified form) (M1)

OR

attempting to obtain
$$a = \frac{96}{r+r^2}$$
 and $a = 500(1-r)$ (M1)

THEN

attempting to solve for r

attempting to solve for
$$r$$
 (M1)
 $r = 0.2 \left(= \frac{1}{5} \right) \text{ or } r = 0.885 \left(= \frac{\sqrt{97} - 1}{10} \right)$ A1A1

[6 marks]

(M1)

5.
$$x = \sqrt{\frac{1-y}{1+y}}$$
 M1
Note: Award M1 for interchanging x and y (can be done at a later stage).
 $x^2 = \frac{1-y}{1+y}$ M1
Note: Award M1 for attempting to make y the subject.
 $y(1+x^2) = 1-x^2$ (A1)
 $f^{-1}(x) = \frac{1-x^2}{1+x^2}, x \ge 0$ A1A1
Note: Award A1 only if $f^{-1}(x)$ is seen. Award A1 for the domain.
the range of f^{-1} is $-1 < f^{-1}(x) \le 1$ A1
Note: Accept correct alternative notation eg. $-1 < y \le 1$.

6.

[6 marks]

(a)	$X \sim \text{Po}(0.5)$	(A1)	
	$P(X \ge 1) = 0.393 (= 1 - e^{-0.5})$	(M1)A1	
			[3 marks]
(b)	P(X = 0) = 0.607	(A1)	
	$E(P) = (0.607 \times 5) - (0.393 \times 3)$	(M1)	
	the expected profit is $\$1.85$ per glass sheet	A1	
			[3 marks]
(C)	$Y \sim \text{Po}(2)$	(M1)	
	$P(Y = 0) = 0.135 (= e^{-2})$	A1	
			[2 marks]
		T = 4 = 1	10

Total [8 marks]

7. (a)
$$3x^2 + 3y^2 \frac{dy}{dx} = 4\left(y + x\frac{dy}{dx}\right)$$
 M1A1

$$(3y^2 - 4x)\frac{dy}{dx} = 4y - 3x^2$$

$$dy = 4y - 3x^2$$
A1

(b)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow 4y - 3x^2 = 0$$
 (M1)

substituting
$$x = k$$
 and $y = \frac{3}{4}k^2$ into $x^3 + y^3 = 4xy$ M1

$$k^3 + \frac{27}{64}k^6 = 3k^3$$
 A1

attempting to solve
$$k^{3} + \frac{27}{64}k^{6} = 3k^{3}$$
 for *k* (M1)

$$k = 1.68 \left(= \frac{4}{3} \sqrt[3]{2} \right)$$

Note: Condone substituting $y = \frac{3}{4}x^2$ into $x^3 + y^3 = 4xy$ and solving for x.

[5 marks]

Total [8 marks]

8. (a)
$$\frac{dv}{ds} = \frac{\cos s}{\sin^2 s + 1}$$

$$a = v \frac{dv}{ds}$$
(M1)
$$a = \frac{\arctan(\sin s) \cos s}{\sin^2 s + 1}$$
A1

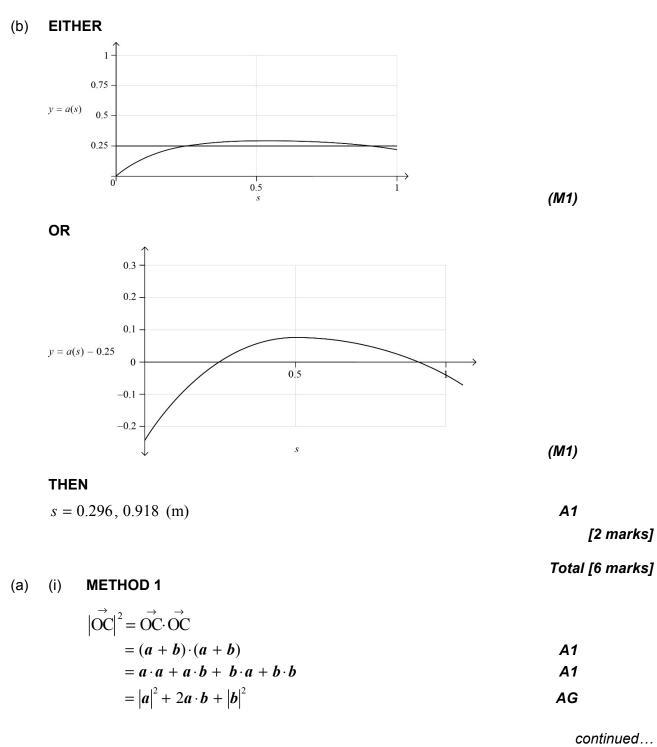
continued...

[4 marks]

– 11 –

Question 8 continued

9.



Question 9 continued

METHOD 2

$$\left|\vec{OC}\right|^{2} = \left|\vec{OA}\right|^{2} + \left|\vec{OB}\right|^{2} - 2\left|\vec{OA}\right| \left|\vec{OB}\right| \cos\left(\vec{OAC}\right)$$
 A1

$$|\vec{OA}||\vec{OB}|\cos(OAC) = -(\boldsymbol{a} \cdot \boldsymbol{b})$$
 A1

$$|\overrightarrow{OC}|^2 = |\boldsymbol{a}|^2 + 2\boldsymbol{a}\cdot\boldsymbol{b} + |\boldsymbol{b}|^2$$
 AG

(ii) METHOD 1

$$\begin{vmatrix} \overrightarrow{AB} \end{vmatrix}^2 = \overrightarrow{AB} \cdot \overrightarrow{AB} = (b-a) \cdot (b-a)$$

$$= b \cdot b - b \cdot a - a \cdot b + a \cdot a$$
A1

$$= |\boldsymbol{a}|^2 - 2\boldsymbol{a} \cdot \boldsymbol{b} + |\boldsymbol{b}|^2 \qquad \qquad \mathbf{AG}$$

METHOD 2

$$\left| \overrightarrow{AB} \right|^{2} = \left| \overrightarrow{AC} \right|^{2} + \left| \overrightarrow{BC} \right|^{2} - 2 \left| \overrightarrow{AC} \right| \left| \overrightarrow{BC} \right| \cos \left(\overrightarrow{ACB} \right)$$

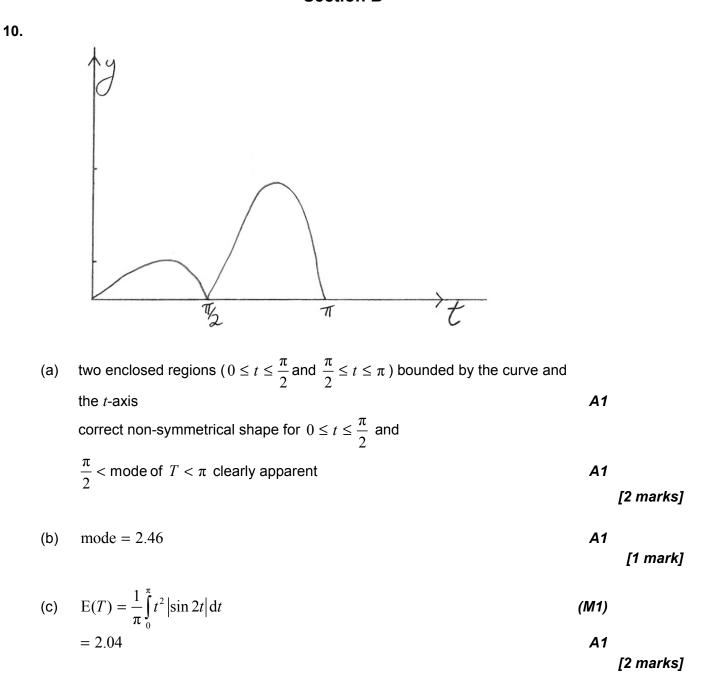
$$A1$$

$$|AC||BC|\cos(A\hat{C}B) = \boldsymbol{a} \cdot \boldsymbol{b}$$
 A1

$$|\overrightarrow{AB}|^2 = |\boldsymbol{a}|^2 - 2\boldsymbol{a}\cdot\boldsymbol{b} + |\boldsymbol{b}|^2$$
 AG [4 marks]

(b)
$$|\overrightarrow{OC}| = |\overrightarrow{AB}| \Rightarrow |\overrightarrow{OC}|^2 = |\overrightarrow{AB}|^2 \Rightarrow |a|^2 + 2a \cdot b + |b|^2 = |a|^2 - 2a \cdot b + |b|^2$$
 R1(M1)
Note: Award R1 for $|\overrightarrow{OC}| = |\overrightarrow{AB}| \Rightarrow |\overrightarrow{OC}|^2 = |\overrightarrow{AB}|^2$ and (M1) for $|a|^2 + 2a \cdot b + |b|^2 = |a|^2 - 2a \cdot b + |b|^2$.
 $a \cdot b = 0$ A1
hence OACB is a rectangle (a and b both non-zero)
with adjacent sides at right angles R1
Note: Award R1(M1)AOR1 if the dot product has not been used.
[4 marks]

Total [8 marks]



Question 10 continued

(d) **EITHER**

$$\operatorname{Var}(T) = \int_{0}^{\pi} (t - 2.03788...)^{2} \left(\frac{t|\sin 2t|}{\pi}\right) dt$$
 (M1)(A1)

OR

$$\operatorname{Var}(T) = \int_{0}^{\pi} t^{2} \left(\frac{t |\sin 2t|}{\pi} \right) dt - (2.03788...)^{2}$$
 (M1)(A1)

THEN

$$Var(T) = 0.516$$
 A1 [3 marks]

(e)
$$\frac{1}{\pi} \int_{2.03788...}^{2.456590...} t |\sin 2t| dt = 0.285$$
 (M1)A1 [2 marks]

(f) (i) attempting integration by parts (M1)

$$(u = t, du = dt, dv = \sin 2t dt \text{ and } v = -\frac{1}{2}\cos 2t)$$

$$\frac{1}{\pi} \left[t \left(-\frac{1}{2}\cos 2t \right) \right]_{0}^{T} - \frac{1}{\pi} \int_{0}^{T} \left(-\frac{1}{2}\cos 2t \right) dt$$
A1
Note: Award A1 if the limits are not included.

$$= \frac{\sin 2T}{4\pi} - \frac{T\cos 2T}{2\pi}$$
A1

(ii)
$$\frac{\sin \pi}{4\pi} - \frac{\frac{\pi}{2}\cos \pi}{2\pi} = \frac{1}{4}$$
 A1
as $P\left(0 \le T \le \frac{\pi}{2}\right) = \frac{1}{4}$ (or equivalent), then the lower quartile of T is $\frac{\pi}{2}$ R1AG
[5 marks]

Total [15 marks]

11. (a) EITHER

$$\alpha = \arctan \frac{7}{10} - \arctan \frac{5}{10} (= 34.992...^{\circ} - 26.5651...^{\circ})$$
 (M1)(A1)(A1)

– 16 –

Note: Award (M1) for $\alpha = A\hat{P}T - B\hat{P}T$, (A1) for a correct $A\hat{P}T$ and (A1) for a correct $B\hat{P}T$.

OR

$$\alpha = \arctan 2 - \arctan \frac{10}{7} (= 63.434...^{\circ} - 55.008...^{\circ})$$
 (M1)(A1)(A1)

Note: Award (M1) for
$$\alpha = P\hat{B}T - P\hat{A}T$$
, (A1) for a correct $P\hat{B}T$ and (A1) for a correct $P\hat{A}T$.

OR

$$\alpha = \arccos\left(\frac{125 + 149 - 4}{2 \times \sqrt{125} \times \sqrt{149}}\right)$$

(M1)(A1)(A1)

Note: Award *(M1)* for use of cosine rule, *(A1)* for a correct numerator and *(A1)* for a correct denominator.

THEN

= 8.43°

A1

[4 marks]

M1A1A1

М1

Question 11 continued

(b) **EITHER**

$$\tan \alpha = \frac{\frac{7}{x} - \frac{5}{x}}{1 + \left(\frac{7}{x}\right)\left(\frac{5}{x}\right)}$$

Note: Award **M1** for use of tan(A - B), **A1** for a correct numerator and **A1** for a correct denominator.

$$=\frac{\frac{2}{x}}{1+\frac{35}{x^2}}$$

OR

$$\tan \alpha = \frac{\frac{x}{5} - \frac{x}{7}}{1 + \left(\frac{x}{5}\right)\left(\frac{x}{7}\right)}$$
 M1A1A1

Note: Award M1 for use of $tan(A - B)$, A1 for a correct numerator and A1 for a		
correct denominator.		
2x		
$=\frac{\overline{35}}{\sqrt{2}}$	М1	
$1 + \frac{x}{35}$		

OR

$$\cos \alpha = \frac{x^2 + 35}{\sqrt{(x^2 + 25)(x^2 + 49)}}$$
 M1A1

Note: Award **M1** for either use of the cosine rule or use of cos(A - B).

$$\sin \alpha = \frac{2x}{\sqrt{(x^2 + 25)(x^2 + 49)}}$$

$$\tan \alpha = \frac{\frac{2x}{\sqrt{(x^2 + 25)(x^2 + 49)}}}{\frac{x^2 + 35}{\sqrt{(x^2 + 25)(x^2 + 49)}}}$$
M1

THEN

$$\tan \alpha = \frac{2x}{x^2 + 35}$$

[4 marks] continued...

Question 11 continued

(c) (i)
$$\frac{d}{dx}(\tan \alpha) = \frac{2(x^2 + 35) - (2x)(2x)}{(x^2 + 35)^2} \left(= \frac{70 - 2x^2}{(x^2 + 35)^2} \right)$$
 M1A1A1

Note: Award *M1* for attempting product or quotient rule differentiation, *A1* for a correct numerator and *A1* for a correct denominator.

(ii) METHOD 1

EITHER

$$\frac{d}{dx}(\tan \alpha) = 0 \Rightarrow 70 - 2x^2 = 0$$
(M1)

$$x = \sqrt{35}(m)(= 5.9161...(m))$$
A1

$$\tan \alpha = \frac{1}{\sqrt{35}} (= 0.16903...)$$
 (A1)

OR

attempting to locate the stationary point on the graph of

$$\tan \alpha = \frac{2x}{x^2 + 35} \tag{M1}$$

$$x = 5.9161...(m) \left(= \sqrt{35}(m)\right)$$
 A1

$$\tan \alpha = 0.16903... \left(= \frac{1}{\sqrt{35}} \right)$$
 (A1)

THEN

 $\alpha = 9.59^{\circ}$

A1

Question 11 continued

METHOD 2

EITHER

$$\alpha = \arctan\left(\frac{2x}{x^2 + 35}\right) \Rightarrow \frac{d\alpha}{dx} = \frac{70 - 2x^2}{\left(x^2 + 35\right)^2 + 4x^2}$$
 M1

$$\frac{\mathrm{d}\alpha}{\mathrm{d}x} = 0 \Longrightarrow x = \sqrt{35}(\mathrm{m}) (= 5.9161...(\mathrm{m}))$$

OR

attempting to locate the stationary point on the graph of

$$\alpha = \arctan\left(\frac{2x}{x^2 + 35}\right) \tag{M1}$$

$$x = 5.9161...(m) \left(=\sqrt{35}(m)\right)$$
 A1

THEN

$$\alpha = 0.1674... \left(= \arctan \frac{1}{\sqrt{35}} \right)$$
 (A1)

$$=9.59^{\circ}$$

(iii)
$$\frac{d^2}{dx^2}(\tan \alpha) = \frac{(x^2 + 35)^2 (-4x) - (2)(2x)(x^2 + 35)(70 - 2x^2)}{(x^2 + 35)^4} \left(= \frac{4x(x^2 - 105)}{(x^2 + 35)^3} \right)$$

M1A1

substituting $x = \sqrt{35}$ (= 5.9161...) into $\frac{d^2}{dx^2}(\tan \alpha)$ M1 d^2

$$\frac{d}{dx^2}(\tan \alpha) < 0 \ (= -0.004829...)$$
 and so $\alpha = 9.59^{\circ}$ is the maximum value of α

lpha never exceeds 10° AG

[11 marks]

R1

Question 11 continued

(d) attempting to solve
$$\frac{2x}{x^2 + 35} \ge \tan 7^\circ$$
 (M1)
Note: Award (M1) for attempting to solve $\frac{2x}{x^2 + 35} = \tan 7^\circ$.

$$x = 2.55 \text{ and } x = 13.7$$
(A1)
$$2.55 \le x \le 13.7 \text{ (m)}$$
A1

Total [22 marks]

12. (a) (i) $\frac{1}{4\left(\frac{e^{x}+e^{-x}}{2}\right)-2\left(\frac{e^{x}-e^{-x}}{2}\right)}$ (M1)

$$=\frac{1}{2(e^{x}+e^{-x})-(e^{x}-e^{-x})}$$
(A1)

$$=\frac{1}{e^x+3e^{-x}}$$
 A1

$$=\frac{e^x}{e^{2x}+3}$$
 AG

(ii)
$$u = e^x \Longrightarrow du = e^x dx$$
 A1

$$\int \frac{e^x}{e^{2x} + 3} dx = \int \frac{1}{u^2 + 3} du$$
 M1

(when x = 0, u = 1 and when $x = \ln 3$, u = 3)

$$\int_{1}^{3} \frac{1}{u^{2} + 3} du = \left[\frac{1}{\sqrt{3}} \arctan\left(\frac{u}{\sqrt{3}}\right)\right]_{1}^{3}$$
M1A1

$$\left(= \left[\frac{1}{\sqrt{3}} \arctan\left(\frac{e^x}{\sqrt{3}}\right) \right]_0^{\ln 3} \right)$$

$$= \frac{\pi\sqrt{3}}{9} - \frac{\pi\sqrt{3}}{18}$$
(M1)

$$=\frac{\pi\sqrt{3}}{18}$$

[9 marks]

Question 12 continued

(b) (i)
$$(n+1)e^{2x} - 2ke^x + (n-1) = 0$$
 M1A1
 $e^x = \frac{2k \pm \sqrt{4k^2 - 4(n^2 - 1)}}{2(n+1)}$ M1

$$x = \ln\left(\frac{k \pm \sqrt{k^2 - n^2 + 1}}{n + 1}\right)$$
 M1A1

(ii) for two real solutions, we require $k > \sqrt{k^2 - n^2 + 1}$ and we also require $k^2 - n^2 + 1 > 0$ $k^2 > n^2 - 1$ $\Rightarrow k > \sqrt{n^2 - 1}$ ($k \in \mathbb{R}^+$) [8 marks]

(c) (i) **METHOD 1**

$$t(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

$$t'(x) = \frac{\left(e^{x} + e^{-x}\right)^{2} - \left(e^{x} - e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$M1A1$$

$$t'(x) = \frac{\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}}{\left(\frac{e^{x} + e^{-x}}{2}\right)^{2}}$$

$$A1$$

$$=\frac{[f(x)]^{2} - [g(x)]^{2}}{[f(x)]^{2}}$$
 AG

METHOD 2

$$t'(x) = \frac{f(x)g'(x) - g(x)f'(x)}{[f(x)]^2}$$
M1A1

$$g'(x) = f(x) \text{ and } f'(x) = g(x)$$
A1

$$= \frac{[f(x)]^2 - [g(x)]^2}{[f(x)]^2}$$
AG

continued...

– 21 –

Question 12 continued

METHOD 3

$$t(x) = (e^{x} - e^{-x})(e^{x} + e^{-x})^{-1}$$

$$t'(x) = 1 - \frac{(e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}}$$

$$m1A1$$

$$t = [g(x)]^{2}$$

$$=1 - \frac{[g(x)]}{[f(x)]^2}$$
 A1

$$=\frac{[f(x)]^{2} - [g(x)]^{2}}{[f(x)]^{2}}$$
 AG

METHOD 4

$$t'(x) = \frac{g'(x)}{f(x)} - \frac{g(x)f'(x)}{[f(x)]^2}$$
M1A1

$$g'(x) = f(x)$$
 and $f'(x) = g(x)$ gives $t'(x) = 1 - \frac{[g(x)]^2}{[f(x)]^2}$ A1

$$=\frac{\left[f(x)\right]^2 - \left[g(x)\right]^2}{\left[f(x)\right]^2} \qquad \qquad \text{AG}$$

(ii) METHOD 1

$$[f(x)]^2 > [g(x)]^2$$
 (or equivalent)M1A1 $[f(x)]^2 > 0$ R1hence $t'(x) > 0$, $x \in \mathbb{R}$ AG

Note: Award as above for use of either $f(x) = \frac{e^x + e^{-x}}{2}$ and $g(x) = \frac{e^x - e^{-x}}{2}$ or $e^x + e^{-x}$ and $e^x - e^{-x}$.

Question 12 continued

METHOD 2

$$[f(x)]^2 - [g(x)]^2 = 1$$
 (or equivalent)
 M1A1

 $[f(x)]^2 > 0$
 R1

 hence $t'(x) > 0$, $x \in \mathbb{R}$
 AG

Note: Award as above for use of either $f(x) = \frac{e^x + e^{-x}}{2}$ and $g(x) = \frac{e^x - e^{-x}}{2}$ or $e^x + e^{-x}$ and $e^x - e^{-x}$.

METHOD 3

$$t'(x) = \frac{4}{(e^{x} + e^{-x})^{2}}$$

$$(e^{x} + e^{-x})^{2} > 0$$

$$\frac{4}{(e^{x} + e^{-x})^{2}} > 0$$
hence $t'(x) > 0, x \in \mathbb{R}$
M1A1

R1

AG

[6 marks]

Total [23 marks]