

Mathematics Higher level Paper 3 – sets, relations and groups

Thursday 21 May 2015 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Consider the set $S_3 = \{p, q, r, s, t, u\}$ of permutations of the elements of the set $\{1, 2, 3\}$, defined by

$p = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 2	$\begin{pmatrix} 3 \\ 3 \end{pmatrix}, q = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2 3	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}, r = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 2	$\begin{pmatrix} 3\\1 \end{pmatrix}$,
$s = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	2 1	$\begin{pmatrix} 3\\3 \end{pmatrix}, t = \begin{pmatrix} 1\\2 \end{pmatrix}$	2 3	$\begin{pmatrix} 3\\1 \end{pmatrix}, u = \begin{pmatrix} 1\\3 \end{pmatrix}$	2 1	$\binom{3}{2}$.

Let \circ denote composition of permutations, so $a \circ b$ means b followed by a. You may assume that (S_3, \circ) forms a group.

(a) Complete the following Cayley table

0	p	q	r	S	t	и
p						
q			t			S
r		и		t	S	q
s		t	и			r
t		S	q	r		
и		r	S	q		

(b) (i) State the inverse of each element.

(ii) Determine the order of each element.

- (c) Write down the subgroups containing
 - (i) *r*,
 - (ii) *u*.

-2-

[5]

[6]

[2]

2. [Maximum mark: 10]

3.

4.

(ii) g is a surjection.

The binary operation * is defined for $x, y \in S = \{0, 1, 2, 3, 4, 5, 6\}$ by

 $x * y = (x^3 y - xy) \mod 7.$

(a)	Find the element <i>e</i> such that $e * y = y$, for all $y \in S$.				
(b)	(i) Find the least solution of $x * x = e$.				
	(ii) Deduce that $(S, *)$ is not a group.	[5]			
(C)	Determine whether or not e is an identity element.	[3]			
[Ma	ximum mark: 12]				
The relation <i>R</i> is defined on \mathbb{Z} by <i>xRy</i> if and only if $x^2y \equiv y \mod 6$.					
(a)	Show that the product of three consecutive integers is divisible by 6.	[2]			
(b)	Hence prove that R is reflexive.	[3]			
(C)	Find the set of all y for which $5Ry$.	[3]			
(d)	Find the set of all y for which $3Ry$.	[2]			
(e)	Using your answers for (c) and (d) show that R is not symmetric.	[2]			
[Maximum mark: 9]					
Let <i>X</i> and <i>Y</i> be sets. The functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are such that $g \circ f$ is the identity function on <i>X</i> .					
(a)	Prove that				
	(i) f is an injection,				

(b) Given that $X = \mathbb{R}^+ \cup \{0\}$ and $Y = \mathbb{R}$, choose a suitable pair of functions f and g to show that g is not necessarily a bijection. [3]

[6]

5. [Maximum mark: 16]

Consider the sets

$$G = \left\{ \frac{n}{6^i} \mid n \in \mathbb{Z}, i \in \mathbb{N} \right\}, \ H = \left\{ \frac{m}{3^j} \mid m \in \mathbb{Z}, j \in \mathbb{N} \right\}.$$

- (a) Show that (G, +) forms a group where + denotes addition on \mathbb{Q} . Associativity may be assumed. [5]
- (b) Assuming that (H, +) forms a group, show that it is a proper subgroup of (G, +). [4]

The mapping $\phi: G \to G$ is given by $\phi(g) = g + g$, for $g \in G$.

(c) Prove that ϕ is an isomorphism.

[7]