

Further mathematics Higher level Paper 1

Wednesday 20 May 2015 (afternoon)

2 hours 30 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [150 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 5]

Use l'Hôpital's rule to find $\lim_{x\to 0} (\csc x - \cot x)$.

- 2. [Maximum mark: 7]
 - (a) Find the general solution to the Diophantine equation 3x + 5y = 7. [5]
 - (b) Find the values of x and y satisfying the equation for which x has the smallest positive integer value greater than 50. [2]
- 3. [Maximum mark: 11]

Consider the set $S = \{0, 1, 2, 3, 4, 5\}$ under the operation of addition modulo 6, denoted by $+_{6}$.

(a)	Construct the Cayley table for $\{S, +_6\}$.	[2]
(b)	Show that $\{S, +_6\}$ forms an Abelian group.	[5]
(C)	State the order of each element.	[2]
(d)	Explain whether or not the group is cyclic.	[2]

4. [Maximum mark: 10]

	A	B	С	D	Е	F
Α	_	1	_	_	1	1
B	1	_	1	_	1	_
С	_	1	_	1	_	_
D	_	_	1	_	1	1
E	1	1	_	1	_	_
F	1	_	_	1	_	_

A simple graph G is represented by the following adjacency table.

(a)	Draw the simple graph G .	[1]
(b)	Explain why G does not contain an Eulerian circuit.	[1]
(c)	Show that G has a Hamiltonian cycle.	[2]
(d)	State whether or not G is planar, giving a reason for your answer.	[2]
(e)	State whether or not the simple graph G is bipartite, giving a reason for your answer.	[2]
(f)	Draw the complement G' of G .	[2]

5. [Maximum mark: 9]

Jim is investigating the relationship between height and foot length in teenage boys. A sample of 13 boys is taken and the height and foot length of each boy are measured. The results are shown in the table.

Height x cm	129	135	156	146	155	152	139	166	148	179	157	152	160
Foot length y cm	25.8	25.9	29.7	28.6	29.0	29.1	25.3	29.9	26.1	30.0	27.6	27.2	28.0

You may assume that this is a random sample from a bivariate normal distribution. Jim wishes to determine whether or not there is a positive association between height and foot length.

Calculate the product moment correlation coefficient.	[2]
Find the <i>p</i> -value.	[2]
Interpret the <i>p</i> -value in the context of the question.	[1]
Find the equation of the regression line of y on x .	[2]
Estimate the foot length of a boy of height $170 \mathrm{cm}$.	[2]
	Find the <i>p</i> -value. Interpret the <i>p</i> -value in the context of the question. Find the equation of the regression line of y on x .

6. [Maximum mark: 9]

Find the interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-3)^k}{k^2}$.

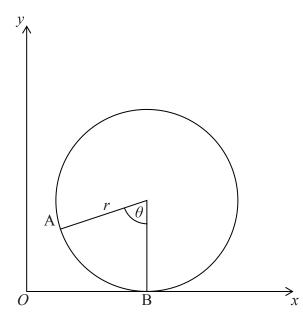
7. [Maximum mark: 12]

(a) Sami is undertaking market research on packets of soap powder. He considers the brand "Gleam". The weight of the contents of a randomly chosen packet of "Gleam" follows a normal distribution with mean 750 grams and standard deviation 20 grams. The weight of the packaging follows a different normal distribution with mean 40 grams and standard deviation 5 grams.

Find:

- (i) the probability that a randomly chosen packet of "Gleam" has a **total** weight exceeding 780 grams.
- (ii) the probability that the total weight of the **contents** of five randomly chosen packets of "Gleam" exceeds 3800 grams.
- (b) Sami now considers the brand "Bright". The weight of the contents of a randomly chosen packet of "Bright" follow a normal distribution with mean 650 grams and standard deviation 16 grams. Find the probability that the **contents** of six randomly chosen packets of "Bright" weigh more than the **contents** of five randomly chosen packets of "Gleam".
- 8. [Maximum mark: 10]
 - (a) Differentiate the expression $x^2 \tan y$ with respect to x, where y is a function of x. [3]
 - (b) Hence solve the differential equation $x^2 \frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ given that y = 0when x = 1. Give your answer in the form y = f(x). [7]
- 9. [Maximum mark: 10]

An integer N given in base r, can be expressed in base s in the form $N = a_0 + a_1 s + a_2 s^2 + a_3 s^3 + \dots$ where $a_0, a_1, a_2, \dots \in \{0, 1, 2, \dots, s-1\}$.


- (a) In base 5 an integer is written 1031. Express this integer in base 10. [2]
- (b) Given that N = 365, r = 10 and s = 7 find the values of $a_0, a_1, a_2, ...$ [2]
- (c) (i) Given that N = 899, r = 10 and s = 12 find the values of a_0, a_1, a_2, \dots
 - (ii) Hence write down the integer in base 12, which is equivalent to 899 in base 10. [3]
- (d) Show that 121 is always a square number in any base greater than 2. [3]

[8]

[4]

10. [Maximum mark: 12]

A wheel of radius r rolls, without slipping, along a straight path with the plane of the wheel remaining vertical. A point A on the circumference of the wheel is initially at O. When the wheel is rolled, the radius rotates through an angle of θ and the point of contact is now at B, where the length of the arc AB is equal to the distance OB. This is shown in the following diagram.

- (a) Find the coordinates of A in terms of r and θ .
- (b) As the wheel rolls, the point A traces out a curve. Show that the gradient of this curve is $\cot\left(\frac{1}{2}\theta\right)$. [6]
- (c) Find the equation of the tangent to the curve when $\theta = \frac{\pi}{3}$. [3]
- **11.** [Maximum mark: 7]

Prove that the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by f(x, y) = (2x + y, x + y) is a bijection.

[3]

12. [Maximum mark: 12]

A transformation *T* is a linear mapping from \mathbb{R}^3 to \mathbb{R}^4 , represented by the matrix.

$$M = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 7 & 5 \\ -3 & 1 & 4 \\ 1 & 5 & 4 \end{pmatrix}$$

- (a) (i) Find the row rank of M.
 - (ii) Hence or otherwise find the kernel of *T*. [8]
- (b) (i) State the column rank of M.
 - (ii) Find the basis for the range of this transformation.
- 13. [Maximum mark: 9]
 - (a) Two line segments [AB] and [CD] meet internally at the point Y. Given that $YA \times YB = YC \times YD$ show that A, B, C and D all lie on the circumference of a circle. [6]
 - (b) Explain why the result also holds if the line segments meet externally at Y. [3]
- **14.** [Maximum mark: 9]

Sarah is the quality control manager for the Stronger Steel Corporation which makes steel sheets. The steel sheets should have a mean tensile strength of 430 MegaPascals (MPa). If the mean tensile strength drops to 400 MPa, then Sarah must recommend a change in composition. The tensile strength of these steel sheets follows a normal distribution with a standard deviation of 35 MPa. Sarah defines the following hypotheses

$$H_0: \mu = 430$$

 $H_1: \mu = 400$

where μ denotes the mean tensile strength in MPa. She takes a random sample of *n* steel sheets and defines the critical region as $\overline{x} \le k$, where \overline{x} denotes the mean tensile strength of the sample in MPa and *k* is a constant.

Given that the P(Type I Error) = 0.0851 and P(Type II Error) = 0.115, both correct to three significant figures, find the value of k and the value of n.

[4]

[2]

15. [Maximum mark: 13]

The relations ρ_1 and ρ_2 are defined on the Cartesian plane as follows

$$(x_1, y_1) \rho_1 (x_2, y_2) \Leftrightarrow x_1^2 - x_2^2 = y_1^2 - y_2^2 (x_1, y_1) \rho_2 (x_2, y_2) \Leftrightarrow \sqrt{x_1^2 + x_2^2} \le \sqrt{y_1^2 + y_2^2} .$$

- (a) For ρ_1 and ρ_2 determine whether or not each is reflexive, symmetric and transitive. [11]
- (b) For each of ρ_1 and ρ_2 which is an equivalence relation, describe the equivalence classes.

16. [Maximum mark: 5]

A circle $x^2 + y^2 + dx + ey + c = 0$ and a straight line lx + my + n = 0 intersect. Find the general equation of a circle which passes through the points of intersection, justifying your answer.