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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if graphs 
are used to find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 
advised to show all working.

1. [Maximum mark:  12]

 A group with the binary operation of multiplication modulo 15 is shown in the following  
Cayley table.

×15 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 a b c

13 13 11 7 1 14 d e f

14 14 13 11 8 7 g h i

 (a) Find the values represented by each of the letters in the table. [3]

 (b) Find the order of each of the elements of the group. [3]

 (c) Write down the three sets that form subgroups of order 2. [2]

 (d) Find the three sets that form subgroups of order 4. [4]
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2. [Maximum mark:  8]

	 Define	 f : \ . 0 5{ }→  by f x x
x

( ) = +
−

4 1
2 1

.

 (a) Prove that  f  is an injection. [4]

 (b) Prove that  f  is not a surjection. [4]

3. [Maximum mark:  11]

 Consider the set  A  consisting of all the permutations of the integers 1 2 3 4 5, , , , .

 (a) Two members of  A  are given by p = ( )1 2 5  and q = ( ) ( )13 2 5 .
  Find the single permutation which is equivalent to q p . [4]

 (b) State a permutation belonging to  A  of order 

  (i) 4;

  (ii) 6. [3]

 (c) Let P = {all permutations in  A  where exactly two integers change position},

and Q = {all permutations in  A  where the integer 1 changes position}.

  (i) List all the elements in P Q∩ .

  (ii) Find n P Q( )∩ ′ . [4]
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4. [Maximum mark:  10]

 The group { , }G ∗  has identity eG  and the group { , }H   has identity eH .  A homomorphism  f  
is such that f G H: → .  It is given that f e eG H( ) = .

 (a) Prove that for all a G∈ , f a f a( ) ( )− −= ( )1 1 . [4]

 Let { , }H   be the cyclic group of order seven, and let  p  be a generator.
 Let x G∈  such that f x p( ) = 2 .

 (b) Find f x( )−1 . [2]

 (c) Given that f x y p( )∗ = ,	find	 f y( ) . [4]

5. [Maximum mark:  19]

 (a) State Lagrange’s theorem. [2]

 G , ∗{ }  is a group with identity element  e .  Let a b G, ∈ . 

 (b) Verify that the inverse of a b∗ −1  is equal to b a∗ −1 . [3]

 Let H , ∗{ }  be a subgroup of G , ∗{ } .  Let  R		be	a	relation	defined	on		G  by

aRb a b H⇔ ∗ ∈−1 .

 (c) Prove that  R  is an equivalence relation, indicating clearly whenever you are using one  
of the four properties required of a group. [8]

 (d) Show that aRb a Hb⇔ ∈ , where Hb  is the right coset of  H  containing  b . [3]

 It is given that the number of elements in any right coset of  H  is equal to the order of  H . 

 (e) Explain how this fact together with parts (c) and (d) prove Lagrange’s theorem. [3]


