

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 13 November 2014 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics HL* formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

A group with the binary operation of multiplication modulo 15 is shown in the following Cayley table.

×15	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	a	b	с
13	13	11	7	1	14	d	е	f
14	14	13	11	8	7	g	h	i

(a)	Find the values represented by each of the letters in the table.	[3]
(b)	Find the order of each of the elements of the group.	[3]
(c)	Write down the three sets that form subgroups of order 2.	[2]
(1)		E (7

(d) Find the three sets that form subgroups of order 4. [4]

2. [Maximum mark: 8]

Define
$$f : \mathbb{R} \setminus \{0.5\} \to \mathbb{R}$$
 by $f(x) = \frac{4x+1}{2x-1}$.

- (a) Prove that f is an injection. [4]
- (b) Prove that f is not a surjection. [4]

3. [Maximum mark: 11]

Consider the set A consisting of all the permutations of the integers 1, 2, 3, 4, 5.

- (a) Two members of A are given by $p = (1 \ 2 \ 5)$ and $q = (1 \ 3)(2 \ 5)$. Find the single permutation which is equivalent to $q \circ p$. [4]
- (b) State a permutation belonging to A of order
 - (i) 4;
 - (ii) 6. *[3]*
- (c) Let $P = \{ all permutations in A where exactly two integers change position \}, and <math>Q = \{ all permutations in A where the integer 1 changes position \}.$
 - (i) List all the elements in $P \cap Q$.
 - (ii) Find $n(P \cap Q')$. [4]

[2]

4. [Maximum mark: 10]

The group $\{G, *\}$ has identity e_G and the group $\{H, \circ\}$ has identity e_H . A homomorphism f is such that $f: G \to H$. It is given that $f(e_G) = e_H$.

(a) Prove that for all
$$a \in G$$
, $f(a^{-1}) = (f(a))^{-1}$. [4]

Let $\{H, \circ\}$ be the cyclic group of order seven, and let p be a generator. Let $x \in G$ such that $f(x) = p^2$.

- (b) Find $f(x^{-1})$. [2]
- (c) Given that f(x * y) = p, find f(y). [4]
- **5.** [Maximum mark: 19]
 - (a) State Lagrange's theorem.
 - $\{G, *\}$ is a group with identity element *e*. Let $a, b \in G$.
 - (b) Verify that the inverse of $a * b^{-1}$ is equal to $b * a^{-1}$. [3]
 - Let $\{H, *\}$ be a subgroup of $\{G, *\}$. Let R be a relation defined on G by

$$aRb \Leftrightarrow a * b^{-1} \in H$$
.

- (c) Prove that *R* is an equivalence relation, indicating clearly whenever you are using one of the four properties required of a group. [8]
- (d) Show that $aRb \Leftrightarrow a \in Hb$, where Hb is the right coset of H containing b. [3]

It is given that the number of elements in any right coset of H is equal to the order of H.

(e) Explain how this fact together with parts (c) and (d) prove Lagrange's theorem. [3]