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	Do not open this examination paper until instructed to do so.
	Answer all the questions.
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if graphs 
are used to find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 
advised to show all working.

1. [Maximum mark:  12]

 The binary operation ∆  is defined on the set {1, 2, 3, 4, 5}S =  by the following Cayley table.

∆ 1 2 3 4 5

1 1 1 2 3 4

2 1 2 1 2 3

3 2 1 3 1 2

4 3 2 1 4 1

5 4 3 2 1 5

 (a) State whether  S  is closed under the operation ∆  and justify your answer. [2]

 (b) State whether ∆  is commutative and justify your answer. [2]

 (c) State whether there is an identity element and justify your answer. [2]

 (d) Determine whether ∆  is associative and justify your answer. [3]

 (e) Find the solutions of the equation 4a b b∆ = ∆ , for 4a ≠ . [3]



M14/5/MATHL/HP3/ENG/TZ0/SG

2214-7209

– 3 –

Turn over 

2. [Maximum mark:  19]

 Consider the set  S  defined by { : 2 }S s s= ∈ ∈  .

 You may assume that +  (addition) and ×  (multiplication) are associative binary operations  
on   .

 (a) (i) Write down the six smallest non-negative elements of  S .

  (ii) Show that { , }S +  is a group.

  (iii) Give a reason why { }S , ×  is not a group.  Justify your answer. [9]

 (b) The relation  R  is defined on  S  by 1 2s Rs  if 1 23 5s s+ ∈ .

  (i) Show that  R  is an equivalence relation.

  (ii) Determine the equivalence classes. [10]
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3. [Maximum mark:  15]

 Sets  X  and  Y  are defined by ] [0, 1 ; {0, 1, 2, 3, 4, 5}X Y= = .

 (a) (i) Sketch the set X Y×  in the Cartesian plane.

  (ii) Sketch the set Y X×  in the Cartesian plane.

  (iii) State ( ) ( )X Y Y X× ∩ × . [5]

 Consider the function f : X Y× →  defined by ( , )  f x y x y= +   
 

and the function g : X Y× →   defined by ( , )g x y xy= .

 (b) (i) Find the range of the function f .

  (ii) Find the range of the function g .

  (iii) Show that f  is an injection.

  (iv) Find 1 ( )f − π , expressing your answer in exact form.

  (v) Find all solutions to 1( , )
2

g x y = . [10]

4. [Maximum mark:  14]

 Let :f G H→  be a homomorphism of finite groups.

 (a) Prove that ( )G Hf e e= , where Ge  is the identity element in  G  and He  is the identity  

  element in  H . [2]

 (b) (i) Prove that the kernel of f , Ker ( )K f= , is closed under the group operation.

  (ii) Deduce that  K  is a subgroup of  G . [6]

 (c) (i) Prove that 1gkg K− ∈  for all g G∈ , k K∈ .

  (ii) Deduce that each left coset of  K  in  G  is also a right coset. [6]


