

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 15 May 2014 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics HL* formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

M14/5/MATHL/HP3/ENG/TZ0/SG

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]

The binary operation Δ is defined on the set $S = \{1, 2, 3, 4, 5\}$ by the following Cayley table.

Δ	1	2	3	4	5
1	1	1	2	3	4
2	1	2	1	2	3
3	2	1	3	1	2
4	3	2	1	4	1
5	4	3	2	1	5

(a)	State whether S is closed under the operation Δ and justify your answer.	[2]
(b)	State whether Δ is commutative and justify your answer.	[2]
(c)	State whether there is an identity element and justify your answer.	[2]
(d)	Determine whether Δ is associative and justify your answer.	[3]
(e)	Find the solutions of the equation $a\Delta b = 4\Delta b$, for $a \neq 4$.	[3]

2. [Maximum mark: 19]

Consider the set *S* defined by $S = \{s \in \mathbb{Q} : 2s \in \mathbb{Z}\}$.

You may assume that + (addition) and \times (multiplication) are associative binary operations on $\mathbb Q$.

- (a) (i) Write down the six smallest non-negative elements of S.
 - (ii) Show that $\{S, +\}$ is a group.
 - (iii) Give a reason why $\{S, \times\}$ is not a group. Justify your answer. [9]
- (b) The relation R is defined on S by $s_1 R s_2$ if $3s_1 + 5s_2 \in \mathbb{Z}$.
 - (i) Show that *R* is an equivalence relation.
 - (ii) Determine the equivalence classes. [10]

[Maximum mark: 15] 3.

Sets *X* and *Y* are defined by $X = [0, 1]; Y = \{0, 1, 2, 3, 4, 5\}$.

- Sketch the set $X \times Y$ in the Cartesian plane. (a) (i)
 - Sketch the set $Y \times X$ in the Cartesian plane. (ii)
 - (iii) State $(X \times Y) \cap (Y \times X)$. [5]

Consider the function $f: X \times Y \rightarrow \mathbb{R}$ defined by f(x, y) = x + yand the function $g: X \times Y \to \mathbb{R}$ defined by g(x, y) = xy.

- Find the range of the function f. (b) (i)
 - (ii) Find the range of the function g.
 - (iii) Show that f is an injection.
 - (iv) Find $f^{-1}(\pi)$, expressing your answer in exact form.
 - (v) Find all solutions to $g(x, y) = \frac{1}{2}$. [10]

[Maximum mark: 14] **4**.

Let $f: G \to H$ be a homomorphism of finite groups.

- Prove that $f(e_G) = e_H$, where e_G is the identity element in G and e_H is the identity (a) element in H. [2]
- Prove that the kernel of f, K = Ker(f), is closed under the group operation. (b) (i)
 - Deduce that K is a subgroup of G. (ii) [6]
- Prove that $gkg^{-1} \in K$ for all $g \in G$, $k \in K$. (c) (i)
 - Deduce that each left coset of K in G is also a right coset. (ii) [6]