

MATHEMATICS HIGHER LEVEL PAPER 3 – DISCRETE MATHEMATICS

Thursday 15 May 2014 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics HL* formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

1. [Maximum mark: 10]

The weighted graph K, representing the travelling costs between five customers, has the following adjacency table.

	А	В	С	D	Е
А	0	1	6	7	4
В	1	0	9	8	10
C	6	9	0	11	3
D	7	8	11	0	12
Е	4	10	3	12	0

(a) Draw the graph K.

- (b) Starting from customer D, use the nearest-neighbour algorithm, to determine an upper bound to the travelling salesman problem for K. [4]
- (c) By removing customer A, use the method of vertex deletion, to determine a lower bound to the travelling salesman problem for K. [4]

[2]

[7]

2. [Maximum mark: 23]

- (a) Consider the integers a = 871 and b = 1157, given in base 10.
 - (i) Express *a* and *b* in base 13.
 - (ii) Hence show that gcd(a, b) = 13.
- (b) A list L contains n+1 distinct positive integers. Prove that at least two members of L leave the same remainder on division by n. [4]
- (c) Consider the simultaneous equations

$$4x + y + 5z = a$$
$$2x + z = b$$
$$3x + 2y + 4z = c$$

where $x, y, z \in \mathbb{Z}$.

- (i) Show that 7 divides 2a + b c.
- (ii) Given that a = 3, b = 0 and c = -1, find the solution to the system of equations modulo 2. [6]
- (d) Consider the set *P* of numbers of the form $n^2 n + 41$, $n \in \mathbb{N}$.
 - (i) Prove that all elements of *P* are odd.
 - (ii) List the first six elements of P for n = 0, 1, 2, 3, 4, 5.
 - (iii) Show that not all elements of *P* are prime.

[6]

- (a) Draw a spanning tree for
 - (i) the complete graph, K_4 ;
 - (ii) the complete bipartite graph, $K_{4,4}$. [2]
- (b) Prove that a simple connected graph with n vertices, where n > 1, must have two vertices of the same degree. [3]
- (c) Prove that every simple connected graph has at least one spanning tree. [5]
- **4.** [Maximum mark: 17]
 - (a) (i) Write down the general solution of the recurrence relation $u_n + 2u_{n-1} = 0$, $n \ge 1$.
 - (ii) Find a particular solution of the recurrence relation $u_n + 2u_{n-1} = 3n 2, n \ge 1$, in the form $u_n = An + B$, where $A, B \in \mathbb{Z}$.
 - (iii) Hence, find the solution to $u_n + 2u_{n-1} = 3n 2$, $n \ge 1$ where $u_1 = 7$. [10]
 - (b) Find the solution of the recurrence relation u_n = 2u_{n-1} 2u_{n-2}, n ≥ 2, where u₀ = 2, u₁ = 2. Express your solution in the form 2^{f(n)} cos(g(n)π), where the functions f and g map N to R.