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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if graphs 
are used to find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 
advised to show all working.

1. [Maximum mark:  10]

 The weighted graph  K , representing the travelling costs between five customers, has the 
following adjacency table.

A B C D E

A 0 1 6 7 4

B 1 0 9 8 10

C 6 9 0 11 3

D 7 8 11 0 12

E 4 10 3 12 0

 (a) Draw the graph  K . [2]

 (b) Starting from customer D, use the nearest-neighbour algorithm, to determine an upper 
bound to the travelling salesman problem for  K . [4]

 (c) By removing customer A, use the method of vertex deletion, to determine a lower bound 
to the travelling salesman problem for  K . [4]
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2. [Maximum mark:  23]

 (a) Consider the integers 871a =  and 1157b = , given in base 10.

  (i) Express  a  and  b  in base 13.

  (ii) Hence show that gcd ( , ) 13a b = . [7]

 (b) A list  L  contains 1n +  distinct positive integers.  Prove that at least two members  
of  L  leave the same remainder on division by  n . [4]

 (c) Consider the simultaneous equations

4 5
2

3 2 4

x y z a
x z b

x y z c

+ + =
+ =

+ + =

  where , ,x y z∈ .

  (i) Show that 7 divides 2a b c+ − .

  (ii) Given that 3a = , 0b =  and 1c = − , find the solution to the system of equations 
modulo 2. [6]

 (d) Consider the set  P  of numbers of the form 2 41n n− + , n∈ .

  (i) Prove that all elements of  P  are odd.

  (ii) List the first six elements of  P  for 0, 1, 2, 3, 4, 5n = .

  (iii) Show that not all elements of  P  are prime. [6]
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3. [Maximum mark:  10]

 (a) Draw a spanning tree for

  (i) the complete graph, 4K ;

  (ii) the complete bipartite graph, 4,4K . [2]

 (b) Prove that a simple connected graph with  n  vertices, where 1n > ,  must have two vertices 
of the same degree. [3]

 (c) Prove that every simple connected graph has at least one spanning tree. [5]

4. [Maximum mark:  17]

 (a) (i) Write down the general solution of the recurrence relation 12 0, 1n nu u n−+ = ≥ .

  (ii) Find a particular solution of the recurrence relation 12 3 2, 1n nu u n n−+ = − ≥ ,  
in the form nu An B= + , where ,A B∈ .

  (iii) Hence, find the solution to 12 3 2, 1n nu u n n−+ = − ≥  where 1 7u = . [10]

 (b) Find the solution of the recurrence relation 1 22 2n n nu u u− −= − , 2n ≥ , where 0 2u = , 

  1 2u = .  Express your solution in the form ( )( )2 cos ( )f n g n π , where the functions 

   and  map  to f g   . [7]


