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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if graphs 
are used to fi nd a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 
advised to show all working.

1. [Maximum mark:  14]

Consider the following functions

:  ]1, [f   �  where ( ) ( 1)( 2)f x x x  

:  g   � � � �  where  ( , ) sin ( ),g x y x y x y  

:  h   � � � �  where ( , ) ( 3 , 2 )h x y x y x y  

(a) Show that f  is bijective. [3]

(b) Determine, with reasons, whether

(i) g  is injective;

(ii) g  is surjective. [6]

(c) Find an expression for 1 ( , )h x y  and hence justify that  h  has an inverse function. [5]

2. [Maximum mark:  11]

(a) Let  G  be a group of order 12 with identity element  e .

Let a G  such that 6a e  and 4a e .

(i) Prove that  G  is cyclic and state two of its generators.

(ii) Let  H  be the subgroup generated by 4a .  Construct a Cayley table for  H . [9]

(b) State, with a reason, whether or not it is necessary that a group is cyclic given that all its 
proper subgroups are cyclic. [2]
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3. [Maximum mark:  15]

(a) Let  A  be the set of all 3 3  matrices of the form 
0
0

0 0 1

a b
b a

 
  
 
 

, where  a  and  b  are real

numbers, and 2 2 0a b  .

(i) Show that 

1

2 2
2 2

2 2

0 0
10 0 , 0

0 0 1 0 0

a b a b
b a b a a b

a b
a b

    
               

.

(ii) Hence prove that ( , )A   is a group where   denotes matrix multiplication. 
(It may be assumed that matrix multiplication is associative). [10]

(b) Let  B  be the set of all 3 3  matrices of the form 
1 0 0
0
0

c d
d c

 
  
 
 

, where  c  and  d  are real 

numbers, and 2 2 0c d  .

Prove that the group ( , )B   is isomorphic to the group ( , )A  . [5]

4. [Maximum mark:  9]

Let ( , )*H  be a subgroup of the group ( , )*G .

Consider the relation  R  defi ned in  G  by xRy  if and only if 1
*y x H  .

(a) Show that  R  is an equivalence relation on  G . [6]

(b) Determine the equivalence class containing the identity element. [3]
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5. [Maximum mark:  11]

(a) Given a set  U , and two of its subsets  A  and  B , prove that

( \ ) ( \ ) ( ) \ ( )A B B A A B A B    , where \A B A B  . [4]

(b) Let { , , , }S A B C D  where A  , {0}B  , {0, 1}C   and {0, 1, 2}D  .

State, with reasons, whether or not each of the following statements is true.

(i) The operation \  is closed in  S .

(ii) The operation   has an identity element in  S  but not all elements have an inverse.

(iii) Given Y S , the equation X Y Y   always has a unique solution for  X  in  S . [7]


