

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Tuesday 21 May 2013 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics SL* information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Give one reason why $\{S, \times_{14}\}$ is not a group.

(b)

(c)

2213-7209

(This question continues on the following page)

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]

The binary operation * is defined on \mathbb{N} by a*b=1+ab.

Determine whether or not *

(a)	is closed;	[2 marks]
(b)	is commutative;	[2 marks]
(c)	is associative;	[3 marks]
(d)	has an identity element.	[3 marks]

2. [Maximum mark: 16]

Consider the set $S = \{1, 3, 5, 7, 9, 11, 13\}$ under the binary operation multiplication modulo 14 denoted by \times_{14} .

(a) Copy and complete the following Cayley table for this binary operation.

X_{14}	1	3	5	7	9	11	13
1	1	3	5	7	9	11	13
3	3				13	5	11
5	5				3	13	9
7	7						
9	9	13	3				
11	11	5	13				
13	13	11	9				

[4 marks]

[1 mark]

[5 marks]

(Question 2 continued)

- (d) Determine the order of each element of $\{G, \times_{14}\}$. [4 marks]
- (e) Find the proper subgroups of $\{G, \times_{14}\}$. [2 marks]

3. [Maximum mark: 13]

The function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 2x+1 & \text{for } x \le 2\\ x^2 - 2x + 5 & \text{for } x > 2 \end{cases}.$$

- (a) (i) Sketch the graph of f.
 - (ii) By referring to your graph, show that f is a bijection. [5 marks]

(b) Find
$$f^{-1}(x)$$
. [8 marks]

4. [Maximum mark: 13]

The relation *R* is defined on $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ by *aRb* if and only if $a(a+1) \equiv b(b+1) \pmod{5}$.

- (a) Show that *R* is an equivalence relation. [6 marks]
- (b) Show that the equivalence defining R can be written in the form

$$(a-b)(a+b+1) \equiv 0 \pmod{5}$$
. [3 marks]

(c) Hence, or otherwise, determine the equivalence classes. [4 marks]

5. [Maximum mark: 8]

H and *K* are subgroups of a group *G*. By considering the four group axioms, prove that $H \cap K$ is also a subgroup of *G*.