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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if graphs 
are used to find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, 
some marks may be given for a correct method, provided this is shown by written working.  You are therefore 
advised to show all working.

1. [Maximum mark:  9]

 The Taylor series of x  about x =1 is given by

a a x a x a x0 1 2
2

3
31 1 1+ − + − + − +…( ) ( ) ( )

 (a) Find the values of a a a0 1 2, ,  and a3 . [6 marks]

 (b)	 Hence,	or	otherwise,	find	the	value	of	 lim
x

x
x→

−
−1

1
1

. [3 marks]

2. [Maximum mark:  15]

 Consider the differential equation d
d
y
x
y x x+ =tan cos2 , given that y = 2  when x = 0 .

 (a)	 Use	Euler’s	method	with	a	step	 length	of	0.1	 to	find	an	approximation	 to	 the	
value of  y  when x = 0 3. . [5 marks]

 (b) (i) Show that the integrating factor for solving the differential equation is 
sec x.

  (ii) Hence solve the differential equation, giving your answer in the form 
y f x= ( ) . [10 marks]

3. [Maximum mark:  11]

 Consider	the	infinite	series	
2

1 2
n

n
n

n x
∞

=
∑ .

 (a) Find the radius of convergence. [4 marks]

 (b) Find the interval of convergence. [3 marks]

 (c) Given that x = −0 1. ,	find	the	sum	of	the	series	correct	to	three	significant	figures. [4 marks]



M13/5/MATHL/HP3/ENG/TZ0/SE

2213-7208

– 3 –

Turn over 

4. [Maximum mark:  11]

 (a)	 Express	 1
2r r( )+

 in partial fractions. [3 marks]

 (b) Let S
r rn

r

n

=
+=

∑ 1
21 ( )

.

  (i) Show that S an bn
n nn = +

+ +

2

4 1 2( )( )
, where  a  and  b  are positive integers whose 

values should be determined. 

  (ii) Write down the value of lim nn
S

→∞
. [8 marks]

5. [Maximum mark:  14]

 (a) y

x0 a – 1 a a + 1
Figure 1

Figure 1 shows part of the graph of y
x

= 1  together with line segments parallel 

to	the	coordinate	axes.

  (i) By considering the areas of appropriate rectangles, show that 

2 1
1

1
1
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a a

a
a

a
a a

+
+

< +
−







< −
−( )

ln
( )

.

 	 (ii)	 Hence	find	lower	and	upper	bounds	for	 ln ( . )1 2 . [9 marks]

(This question continues on the following page)
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(Question 5 continued)

 (b) y

x0 a – 1 a
Figure 2

An improved upper bound can be found by considering Figure 2 which again 
shows part of the graph of y

x
= 1 . 

  (i) By considering the areas of appropriate regions, show that

ln
( )

a
a

a
a a−







< −
−1

2 1
2 1

.

 	 (ii)	 Hence	find	an	upper	bound	for	 ln ( . )1 2 . [5 marks]


