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Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by

working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method,
provided this is shown by written working. You are therefore advised to show all working.

SECTION A
Answer all questions in the boxes provided. Working may be continued below the lines if necessary.
1.  [Maximum mark: 6]

(a) If w=2+2i, find the modulus and argument of w. [2 marks]

b) Given z =cos on +1sin on , find in its simplest form w*z°. [4 marks]
6 6
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2.  [Maximum mark: 6]
Consider the points A(1, 2, 3), B(1,0,5) and C(2,-1,4).
() Find ABxAC. [4 marks]

(b) Hence find the area of the triangle ABC. [2 marks]

N
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[Maximum mark: 5]

1 2 4 -3
Given A4 :{1 1] and B:(l . j, find the matrix X, such that AX4A™"' = B.
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[Maximum mark: 5]

The probability density function of the random variable X is defined as

) T
sinx, 0<x<—

Jx)=

0, otherwise.

Find E(X).

I
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[Maximum mark: 6]
Paint is poured into a tray where it forms a circular pool with a uniform thickness of

0.5cm. If the paint is poured at a constant rate of 4cm’s ™, find the rate of increase of
the radius of the circle when the radius is 20 cm.
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[Maximum mark: 6]

The matrix A is such that 4° = I, where I is the identity matrix. Use mathematical
induction to prove that (4+1)" =2""'(A+1), forall ne Z".

M
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[Maximum mark: 7]

A curve is defined by the equation 8yInx—2x*+4y° =7. Find the equation of the
tangent to the curve at the point where x=1 and y >0.
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[Maximum mark: 6]

1 1 1 1

The first terms of an arithmetic sequence are , , , yen
log, x log, x log,, x log,x

Find x if the sum of the first 20 terms of the sequence is equal to 100.

I
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[Maximum mark: 6]
Two events 4 and B are such that P(4U B)=0.7 and P(4|B")=0.6.

Find P(B).
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[Maximum mark: 7]
(a) Find all values of x for 0.1<x <1 such that sin(mx™')=0. [2 marks]

1
(b) Find .[ 'i nix*sin(mx ') dx, showing that it takes different integer values when

n+l
n is even and when # is odd. [3 marks]
(c) Evaluate joll\ e sin ()| d. [2 marks]
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Do NOT write solutions on this page.
SECTION B
Answer all questions in the answer booklet provided. Please start each question on a new page.

11. [Maximum mark: 19]

(a) (1) Express cos (g + xj in the form acosx—bsinx where a, beR.

(1)) Hence solve V3cosx—sinx=1 for 0<x=<2m. [7 marks]
(b) Let p(x)=2x"—x"—2x+1.

(1)  Show that x =1 is a zero of p.

(ii)) Hence find all the solutions of 2x’ —x* —2x+1=0.

(iii) Express sin20 cosf +sin’ @ in terms of sin .

(iv) Hence solve sin20 cosf +sin°0 =1 for 0<0<2x. [12 marks]
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Do NOT write solutions on this page.
12. [Maximum mark: 19]
(a) Express 4x> —4x+5 in the form a(x—h)* +k where a, h, keQ. [2 marks]

(b) The graph of y=x" is transformed onto the graph of y=4x"—4x+5.
Describe a sequence of transformations that does this, making the order of
transformations clear. [3 marks]

The function f is defined by f(x)= " !

x*—4x+5"
(c) Sketch the graph of y = f(x). [2 marks]
(d) Find the range of f. [2 marks]
(e) By using a suitable substitution show that J f(x)dx = %J. 21 " du . [3 marks]
u +
(f) Prove that JlS;dx - [7 marks]
Lo4x*—4x+5 16
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Do NOT write solutions on this page.

13.

[Maximum mark: 22]

On Saturday, Alfred and Beatrice play 6 different games against each other. In each

game, one of the two wins. The probability that Alfred wins any one of these games is 2 .

(a) Show that the probability that Alfred wins exactly 4 of the games is 287?3 . [3 marks]

(b) (1) Explain why the total number of possible outcomes for the results of the
6 games is 64.

(ii) By expanding (1+x)° and choosing a suitable value for x, prove

[ HEFEHEHHe)

(ii1) State the meaning of this equality in the context of the 6 games played. [4 marks]

(c) The following day Alfred and Beatrice play the 6 games again. Assume that the

probability that Alfred wins any one of these games is still % .

(1) Find an expression for the probability Alfred wins 4 games on the
first day and 2 on the second day. Give your answer in the form

2 K /
(6) (%) (%) where the values of 7, s and 7 are to be found.
p

(ii) Using your answer to (c)(i) and 6 similar expressions write down the
probability that Alfred wins a total of 6 games over the two days as the
sum of 7 probabilities.

S RO ONONONONONO S—
(i11)) Hence prove tha (6 )_(0) +(1)+(2] +(3] +(4) +(5) +(6]. [9 marks]

(d) Alfred and Beatrice play n games. Let A denote the number of games Alfred wins.

n n r
The expected value of 4 can be written as E(A4) = Zr( ]% .
r=0 r

(1)  Find the values of a and b.

(i) By differentiating the expansion of (1+x)", prove that the expected

number of games Alfred wins is Z?n . [6 marks]
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