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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1. [Maximum mark:  16]

 Anna has a box with 10 biscuits in it.  4 biscuits are chocolate and 6 are plain.   
Anna takes a biscuit from her box at random and eats it.  She repeats this process until 
she has eaten 5 biscuits in total.

Let  A  be the number of chocolate biscuits that Anna eats.

 (a) State the distribution of  A . [1 mark]

 (b) Find P( )A = 3 . [2 marks]

 (c) Find P( )A = 5 . [1 mark]

 Bill also has a box with 10 biscuits in it.  4 biscuits are chocolate and 6 are plain.   
Bill takes a biscuit from his box at random, looks at it and replaces it in the box.   
He repeats this process until he has looked at 5 biscuits in total.  Let  B  be the number 
of chocolate biscuits that Bill takes and looks at.

 (d) State the distribution of  B . [1 mark]

 (e) Find P( )B = 3 . [2 marks]

 (f) Find P( )B = 5 . [2 marks]

 Let D B A= − .

 (g) Calculate E( )D . [2 marks]

 (h) Calculate Var ( )D , justifying the validity of your method. [5 marks]
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2. [Maximum mark:  11]

 The  n  independent random variables X X Xn1 2, , ,…  all have the distribution N( , )µ σ 2 .

 (a) Find the mean and the variance of

  (i) X X1 2+ ;

  (ii) 3 1X ;

  (iii) X X X1 2 3+ − ;

  (iv) X X X X
n

n= + +…+( )1 2 . [8 marks]

 (b) Find E( )X1
2  in terms of µ  and σ . [3 marks]
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3. [Maximum mark:  19]

 (a) The random variable  X  represents the height of a wave on a particular surf beach.  
It is known that  X  is normally distributed with unknown mean µ  (metres) and 

known variance σ 2 21
4

= ( )metres .  Sally wishes to test the claim made in a surf 

guide that µ = 3  against the alternative that µ < 3 .  She measures the heights 
of 36 waves and calculates their sample mean x .  She uses this value to test the 
claim at the 5 % level.

  (i) Find a simple inequality, of the form x A< , where  A  is a number to 
be determined to 4 significant figures, so that Sally will reject the null 
hypothesis, that µ = 3 , if and only if this inequality is satisfied.

  (ii) Define a Type I error.

  (iii) Define a Type II error.

  (iv) Write down the probability that Sally makes a Type I error.

  (v) The true value of µ  is 2.75.  Calculate the probability that Sally makes a 
Type II error. [11 marks]

 (b) The random variable  Y  represents the height of a wave on another surf beach.  
It is known that  Y  is normally distributed with unknown mean µ  (metres) and 
unknown variance σ 2 2( )metres .  David wishes to test the claim made in a surf 
guide that µ = 3  against the alternative that µ < 3 .  He is also going to perform 
this test at the 5 % level.  He measures the heights of 36 waves and finds that the 
sample mean, y = 2 860.  and the unbiased estimate of the population variance, 
sn− =1
2 0 25. .

  (i) State the name of the test that David should perform.

  (ii) State the conclusion of David’s test, justifying your answer by giving 
the  p-value.

  (iii) Using David’s results, calculate the 90 % confidence interval for µ , giving 
your answers to 4 significant figures. [8 marks]
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4. [Maximum mark:  14]

 Jenny and her Dad frequently play a board game.  Before she can start Jenny has to 
throw a “six” on an ordinary six-sided dice.  Let the random variable  X  denote the 
number of times Jenny has to throw the dice in total until she obtains her first “six”.

 (a) If the dice is fair, write down the distribution of  X , including the value of any 
parameter(s). [1 mark]

 (b) Write down E( )X  for the distribution in part (a). [1 mark]

 Jenny has played the game with her Dad 216 times and the table below gives the 
recorded values of  X .

Value of  X 1 2 3 4 5 6 7 8 9 10 ≥11
Frequency 40 34 26 24 16 14 12 10 6 4 30

 (c) Use this data to test, at the 10 % significance level, the claim that the probability 
that the dice lands with a “six” uppermost is 1

6
.  Justify your conclusion. [8 marks]

 Before Jenny’s Dad can start, he has to throw two “sixes” using a fair, ordinary  
six-sided dice.  Let the random variable  Y  denote the total number of times Jenny’s 
Dad has to throw the dice until he obtains his second “six”.

 (d) Write down the distribution of  Y , including the value of any parameter(s). [1 mark]

 (e) Find the value of  y  such that P( )Y y= = 1
36

. [1 mark]

 (f) Find P( )Y ≤ 6 . [2 marks]


