

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Thursday 8 November 2012 (morning)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

A differential equation is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}$, where $x>0$ and $y>0$.
(a) Solve this differential equation by separating the variables, giving your answer in the form $y=f(x)$.
(b) Solve the same differential equation by using the standard homogeneous substitution $y=v x$.
(c) Solve the same differential equation by the use of an integrating factor.
(d) If $y=20$ when $x=2$, find y when $x=5$.
2. [Maximum mark: 12]

Let the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{x+y},(x+y \geq 0)$ satisfying the initial conditions $y=1$ when $x=1$. Also let $y=c$ when $x=2$.
(a) Use Euler's method to find an approximation for the value of c, using a step length of $h=0.1$. Give your answer to four decimal places.

You are told that if Euler's method is used with $h=0.05$ then $c \simeq 2.7921$, if it is used with $h=0.01$ then $c \simeq 2.8099$ and if it is used with $h=0.005$ then $c \simeq 2.8121$.
(b) Plot on graph paper, with h on the horizontal axis and the approximation for c on the vertical axis, the four points (one of which you have calculated and three of which have been given). Use a scale of $1 \mathrm{~cm}=0.01$ on both axes. Take the horizontal axis from 0 to 0.12 and the vertical axis from 2.76 to 2.82 .
(c) Draw, by eye, the straight line that best fits these four points, using a ruler.
(d) Use your graph to give the best possible estimate for c, giving your answer to three decimal places.
3. [Maximum mark: 17]
(a) Prove that $\lim _{H \rightarrow \infty} \int_{a}^{H} \frac{1}{x^{2}} \mathrm{~d} x$ exists and find its value in terms of a (where $a \in \mathbb{R}^{+}$). [3 marks]
(b) Use the integral test to prove that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.

Let $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=L$.
(c) The diagram below shows the graph of $y=\frac{1}{x^{2}}$.

(i) Shade suitable regions on a copy of the diagram above and show that $\sum_{n=1}^{k} \frac{1}{n^{2}}+\int_{k+1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x<L$.
(ii) Similarly shade suitable regions on another copy of the diagram above and show that $L<\sum_{n=1}^{k} \frac{1}{n^{2}}+\int_{k}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x$.
(d) Hence show that $\sum_{n=1}^{k} \frac{1}{n^{2}}+\frac{1}{k+1}<L<\sum_{n=1}^{k} \frac{1}{n^{2}}+\frac{1}{k}$.

You are given that $L=\frac{\pi^{2}}{6}$.
(e) By taking $k=4$, use the upper bound and lower bound for L to find an upper bound and lower bound for π. Give your bounds to three significant figures.
4. [Maximum mark: 18]
(a) Use the limit comparison test to prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges. [5 marks]
(b) Express $\frac{1}{n(n+1)}$ in partial fractions and hence find the value of $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. \quad [4 marks]
(c) Using the Maclaurin series for $\ln (1+x)$, show that the Maclaurin series for $(1+x) \ln (1+x)$ is $x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n+1}}{n(n+1)}$.
(d) Hence find $\lim _{x \rightarrow-1}(1+x) \ln (1+x)$.
(e) Write down $\lim _{x \rightarrow 0} x \ln (x)$.
(f) Hence find $\lim _{x \rightarrow 0} x^{x}$.

