MARKSCHEME

November 2012

MATHEMATICS

Higher Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking Nov 2012". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A} \boldsymbol{1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. $\sin \alpha=\sqrt{1-\left(-\frac{3}{4}\right)^{2}}=\frac{\sqrt{7}}{4}$
attempt to use double angle formula
(M1)A1
$\sin 2 \alpha=2 \frac{\sqrt{7}}{4}\left(-\frac{3}{4}\right)=-\frac{3 \sqrt{7}}{8}$
Note: $\frac{\sqrt{7}}{4}$ seen would normally be awarded M1A1.
2. $\left(\frac{x}{y}-\frac{y}{x}\right)^{4}=\left(\frac{x}{y}\right)^{4}+4\left(\frac{x}{y}\right)^{3}\left(-\frac{y}{x}\right)+6\left(\frac{x}{y}\right)^{2}\left(-\frac{y}{x}\right)^{2}+4\left(\frac{x}{y}\right)\left(-\frac{y}{x}\right)^{3}+\left(-\frac{y}{x}\right)^{4}$
(M1)(A1)

Note: Award $\boldsymbol{M 1}$ for attempt to expand and $\boldsymbol{A} \mathbf{1}$ for correct unsimplified expansion.

$$
=\frac{x^{4}}{y^{4}}-4 \frac{x^{2}}{y^{2}}+6-4 \frac{y^{2}}{x^{2}}+\frac{y^{4}}{x^{4}} \quad\left(=\frac{x^{8}-4 x^{6} y^{2}+6 x^{4} y^{4}-4 x^{2} y^{6}+y^{8}}{x^{4} y^{4}}\right)
$$

Note: Award $\boldsymbol{A 1}$ for powers, $\boldsymbol{A 1}$ for coefficients and signs.
Note: Final two \boldsymbol{A} marks are independent of first \boldsymbol{A} mark.

3. (a) METHOD 1

$$
\begin{array}{lr}
f(x)=(x+1)(x-1)(x-2) & \text { M1 } \\
=x^{3}-2 x^{2}-x+2 & \text { A1A1A1 } \\
a=-2, b=-1 \text { and } c=2 &
\end{array}
$$

METHOD 2

from the graph or using $f(0)=2$
$c=2$
setting up linear equations using $f(1)=0$ and $f(-1)=0$ (or $f(2)=0$)
obtain $a=-2, b=-1$
(b) (i) $(1,0),(3,0)$ and $(4,0)$

A1
(ii) $\quad g(0)$ occurs at $3 f(-2)$

$$
=-36
$$

4. (a) $\quad f^{\prime}(x)=(\ln x)^{2}+\frac{2 x \ln x}{x}\left(=(\ln x)^{2}+2 \ln x=\ln x(\ln x+2)\right)$

$$
f^{\prime}(x)=0\left(\Rightarrow x=1, x=e^{-2}\right)
$$

Note: Award M1 for an attempt to solve $f^{\prime}(x)=0$.
$A\left(e^{-2}, 4 e^{-2}\right)$ and $B(1,0)$
Note: The final $\boldsymbol{A 1}$ is independent of prior working.
(b) $\quad f^{\prime \prime}(x)=\frac{2}{x}(\ln x+1)$
$f^{\prime \prime}(x)=0\left(\Rightarrow x=e^{-1}\right)$
inflexion point $\left(e^{-1}, e^{-1}\right)$
Note: \quad M1 for attempt to solve $f^{\prime \prime}(x)=0$.

[3 marks]

Total [8 marks]
5. (a) 0

A1
[1 mark]
(b) $\quad \int_{0}^{1} f(x) \mathrm{d} x=1$
(M1)
$\Rightarrow a=\frac{1}{\int_{0}^{1} e^{-x} \mathrm{~d} x}$
$\Rightarrow a=\frac{1}{\left[-e^{-x}\right]_{0}^{1}}$
$\Rightarrow a=\frac{e}{e-1}$ (or equivalent)
Note: Award first $\boldsymbol{A 1}$ for correct integration of $\int e^{-x} \mathrm{~d} x$. This $\boldsymbol{A 1}$ is independent of previous \boldsymbol{M} mark.
[3 marks]
(c) $\quad \mathrm{E}(X)=\int_{0}^{1} x f(x) \mathrm{d} x\left(=a \int_{0}^{1} x e^{-x} \mathrm{~d} x\right)$
attempt to integrate by parts
$=a\left[-x e^{-x}-e^{-x}\right]_{0}^{1}$ M1
$=a\left(\frac{e-2}{e}\right)$
$=\frac{e-2}{e-1}$ (or equivalent)

6. METHOD 1

(a) $\quad \operatorname{det}\left(\begin{array}{lll}1 & 3 & a-1 \\ 2 & 2 & a-2 \\ 3 & 1 & a-3\end{array}\right)$
$=1(2(a-3)-(a-2))-3(2(a-3)-3(a-2))+(a-1)(2-6)$
(or equivalent)
$=0 \quad$ (therefore there is no unique solution)
(b) $\left(\begin{array}{lll|l}1 & 3 & a-1 & 1 \\ 2 & 2 & a-2 & 1 \\ 3 & 1 & a-3 & b\end{array}\right):\left(\begin{array}{ccc|c}1 & 3 & a-1 & 1 \\ 0 & -4 & -a & -1 \\ 0 & -8 & -2 a & b-3\end{array}\right)$
$:\left(\begin{array}{ccc|c}1 & 3 & a-1 & 1 \\ 0 & -4 & -a & -1 \\ 0 & 0 & 0 & b-1\end{array}\right)$
$b=1$
A1
N2
Note: Award M1 for an attempt to use row operations.

METHOD 2

(a) $\left(\begin{array}{lll|l}1 & 3 & a-1 & 1 \\ 2 & 2 & a-2 & 1 \\ 3 & 1 & a-3 & b\end{array}\right):\left(\begin{array}{ccc|c}1 & 3 & a-1 & 1 \\ 0 & -4 & -a & -1 \\ 0 & -8 & -2 a & b-3\end{array}\right)$
$:\left(\begin{array}{ccc|c}1 & 3 & a-1 & 1 \\ 0 & -4 & -a & -1 \\ 0 & 0 & 0 & b-1\end{array}\right)$ (and 3 zeros imply no unique solution)
[3 marks]
(b) $\quad b=1$

A4
Note: Award $\boldsymbol{A 4}$ only if " $b-1$ " seen in (a).
[4 marks]
Total [7 marks]
7. (a) attempt to apply cosine rule
$4^{2}=6^{2}+\mathrm{QR}^{2}-2 \cdot \mathrm{QR} \cdot 6 \cos 30^{\circ}\left(\right.$ or $\left.\mathrm{QR}^{2}-6 \sqrt{3} \mathrm{QR}+20=0\right)$
$\mathrm{QR}=3 \sqrt{3}+\sqrt{7}$ or $\mathrm{QR}=3 \sqrt{3}-\sqrt{7}$
[4 marks]

(b) METHOD 1

$$
\begin{array}{lr}
k \geq 6 & \text { A1 } \\
k=6 \sin 30^{\circ}=3 & \text { M1A1 }
\end{array}
$$

Note: The M1 in (b) is for recognizing the right-angled triangle case.

METHOD 2

$k \geq 6 \quad$ A1
use of discriminant: $108-4\left(36-k^{2}\right)=0 \quad$ M1
$k=3 \quad$ A1
Note: $k= \pm 3$ is M1AO.
[3 marks]
Total [7 marks]
8. (a) attempt to differentiate implicitly

M1

$$
2 x+\cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y-x \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

Note: $\boldsymbol{A 1}$ for differentiating x^{2} and $\sin y ; \boldsymbol{A 1}$ for differentiating $x y$.

> substitute x and y by π $2 \pi-\frac{\mathrm{d} y}{\mathrm{~d} x}-\pi-\pi \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\pi}{1+\pi}$

Note: M1 for attempt to make $\mathrm{d} y / \mathrm{d} x$ the subject. This could be seen earlier.
(b) $\quad \theta=\frac{\pi}{4}-\arctan \frac{\pi}{1+\pi}$ (or seen the other way) M1
$\tan \theta=\tan \left(\frac{\pi}{4}-\arctan \frac{\pi}{1+\pi}\right)=\frac{1-\frac{\pi}{1+\pi}}{1+\frac{\pi}{1+\pi}}$
M1A1
$\tan \theta=\frac{1}{1+2 \pi}$
$A \boldsymbol{G}$
[3 marks]

9. METHOD 1

(a) $9 t_{A}=7-4 t_{B}$ and
$3-6 t_{A}=-6+7 t_{B}$
M1A1
solve simultaneously
$t_{A}=\frac{1}{3}, t_{B}=1$
Note: Only need to see one time for the $\boldsymbol{A 1}$.
therefore meet at $(3,1)$
(b) boats do not collide because the two times $\left(t_{A}=\frac{1}{3}, t_{B}=1\right)$ are different

R1
[2 marks]

Total [6 marks]

METHOD 2

(a) path of A is a straight line: $y=-\frac{2}{3} x+3$

M1A1

Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt at simultaneous equations.
path of B is a straight line: $y=-\frac{7}{4} x+\frac{25}{4}$
A1
$-\frac{2}{3} x+3=-\frac{7}{4} x+\frac{25}{4}(\Rightarrow x=3)$
so the common point is $(3,1)$
A1
[4 marks]
(b) for boat $\mathrm{A}, 9 t=3 \Rightarrow t=\frac{1}{3}$ and for boat $\mathrm{B}, 7-4 t=3 \Rightarrow t=1$ A1
times are different so boats do not collide
R1AG
[2 marks]

SECTION B

10. (a) (i) $z_{1}=2 \sqrt{3} \mathrm{cis} \frac{3 \pi}{2} \Rightarrow z_{1}=-2 \sqrt{3} \mathrm{i}$
(ii) $z_{1}+z_{2}=-2 \sqrt{3} \mathrm{i}-1+\sqrt{3} \mathrm{i}=-1-\sqrt{3} \mathrm{i}$
$\left(z_{1}+z_{2}\right)^{*}=-1+\sqrt{3} \mathrm{i}$
(b) (i) $\left|z_{2}\right|=2$
$\tan \theta=-\sqrt{3}$
(M1)
z_{2} lies on the second quadrant
$\theta=\arg z_{2}=\frac{2 \pi}{3}$
$z_{2}=2 \operatorname{cis} \frac{2 \pi}{3}$
(ii) attempt to use De Moivre's theorem
$z=\sqrt[3]{2} \operatorname{cis} \frac{\frac{2 \pi}{3}+2 k \pi}{3}, k=0,1$ and 2

$$
z=\sqrt[3]{2} \operatorname{cis} \frac{2 \pi}{9}, \sqrt[3]{2} \operatorname{cis} \frac{8 \pi}{9}, \sqrt[3]{2} \operatorname{cis} \frac{14 \pi}{9}\left(=\sqrt[3]{2} \operatorname{cis}\left(\frac{-4 \pi}{9}\right)\right)
$$

Note: Award $\boldsymbol{A 1}$ for modulus, $\boldsymbol{A 1}$ for arguments.
Note: Allow equivalent forms for z.
(c) (i) METHOD 1
$z^{2}=(1-1+\sqrt{3} \mathrm{i})^{2}=-3(\Rightarrow z= \pm \sqrt{3} \mathrm{i})$
$z=\sqrt{3} \operatorname{cis} \frac{\pi}{2}$ or $z_{1}=\sqrt{3} \operatorname{cis} \frac{3 \pi}{2}\left(=\sqrt{3} \operatorname{cis}\left(\frac{-\pi}{2}\right)\right)$
so $r=\sqrt{3}$ and $\theta=\frac{\pi}{2}$ or $\theta=\frac{3 \pi}{2}\left(=\frac{-\pi}{2}\right)$
Note: Accept $r \operatorname{cis}(\theta)$ form.

METHOD 2

$$
\begin{array}{ll}
z^{2}=(1-1+\sqrt{3 i})^{2}=-3 \Rightarrow z^{2}=3 \operatorname{cis}((2 n+1) \pi) & \text { M1 } \\
r^{2}=3 \Rightarrow r=\sqrt{3} & \text { A1 } \\
2 \theta=(2 n+1) \pi \Rightarrow \theta=\frac{\pi}{2} \text { or } \theta=\frac{3 \pi}{2}(\text { as } 0 \leq \theta<2 \pi) & \boldsymbol{A 1}
\end{array}
$$

Note: Accept $r \operatorname{cis}(\theta)$ form.
continued ...

Question 10 continued

(ii) METHOD 1

$$
\begin{aligned}
& z=-\frac{1}{2 \operatorname{cis} \frac{2 \pi}{3}} \Rightarrow z=\frac{\operatorname{cis} \pi}{2 \operatorname{cis} \frac{2 \pi}{3}} \\
& \Rightarrow z=\frac{1}{2} \operatorname{cis} \frac{\pi}{3} \\
& \text { so } r=\frac{1}{2} \text { and } \theta=\frac{\pi}{3}
\end{aligned}
$$

METHOD 2

$z_{1}=-\frac{1}{-1+\sqrt{3} \mathrm{i}} \Rightarrow z_{1}=-\frac{-1-\sqrt{3} \mathrm{i}}{(-1+\sqrt{3} \mathrm{i})(-1-\sqrt{3} \mathrm{i})}$
$z=\frac{1+\sqrt{3} \mathrm{i}}{4} \Rightarrow z=\frac{1}{2} \operatorname{cis} \frac{\pi}{3}$
so $r=\frac{1}{2}$ and $\theta=\frac{\pi}{3}$
[6 marks]
(d) $\frac{z_{1}}{z_{2}}=\sqrt{3} \operatorname{cis} \frac{5 \pi}{6}$
$\left(\frac{z_{1}}{z_{2}}\right)^{n}=\sqrt{3}^{n} \operatorname{cis} \frac{5 n \pi}{6}$
A1
equating imaginary part to zero and attempting to solve M1 obtain $n=12$ A1

Note: Working which only includes the argument is valid.
[4 marks]
Total [19 marks]
11. (a) $\boldsymbol{A}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) \Rightarrow \boldsymbol{A}^{2}=\left(\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right)$

A1

$$
\begin{align*}
& \boldsymbol{A}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \Rightarrow 3 \boldsymbol{A}=\left(\begin{array}{ll}
6 & 3 \\
3 & 3
\end{array}\right) \tag{A1}\\
& \left(\boldsymbol{A}^{2}-3 \boldsymbol{A}\right)^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)^{2} \\
& =\boldsymbol{I}
\end{align*}
$$

(b) (i) $\quad\left(\begin{array}{cc}a & a-1 \\ b & b\end{array}\right)\binom{1}{3}=\binom{0}{-2} \Rightarrow\left\{\begin{array}{c}a+3 a-3=0 \\ b+3 b=-2\end{array}\right.$
$a=\frac{3}{4}$ and $b=-\frac{1}{2}$
M1(A1)

A1
(ii) METHOD 1
$\boldsymbol{A}^{-1}\binom{1}{3}=\binom{0}{-2} \Rightarrow \boldsymbol{A}\binom{0}{-2}=\binom{1}{3}$
M1
$\left(\begin{array}{cc}a & a-1 \\ b & b\end{array}\right)\binom{0}{-2}=\binom{1}{3} \Rightarrow\left\{\begin{array}{c}-2 a+2=1 \\ -2 b=3\end{array}\right.$
A1
$a=\frac{1}{2}$ and $b=-\frac{3}{2}$
A1

METHOD 2
serious attempt at finding \boldsymbol{A}^{-1}
M1
$\left(\boldsymbol{A}^{-1}=\frac{1}{b}\left(\begin{array}{cc}b & 1-a \\ -b & a\end{array}\right)\right)$
obtain $b+3-3 a=0$ and $-b+3 a=-2 b$ or equivalent linear equations A1
$a=\frac{1}{2}$ and $b=-\frac{3}{2}$
A1

Question 11 continued

(c) (i) METHOD 1

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{cc}
a & a-1 \\
b & b
\end{array}\right)}_{A}\binom{x}{y}=\binom{0}{1} \\
& \Rightarrow\binom{x}{y}=\left(\begin{array}{cc}
a & a-1 \\
b & b
\end{array}\right)\binom{-1}{1} \\
& A^{-1}=\frac{1}{b}\left(\begin{array}{cc}
b & -a+1 \\
-b & a
\end{array}\right) \\
& \binom{x}{y}=\binom{\frac{-a+1}{b}}{\frac{a}{b}}
\end{aligned}
$$

METHOD 2

$a x+(a-1) y=0$ and $b x+b y=1$ A1
attempt to solve
obtain $\left(\frac{1-a}{b}, \frac{a}{b}\right)$
A1A1
(ii) gradient of l_{1} is $\frac{-a}{a-1}$ and gradient of l_{2} is -1 A1A1
the lines are perpendicular $\Rightarrow \frac{-a}{a-1}=1 \Rightarrow a=\frac{1}{2}$
so they intersect at $\left(\frac{1}{2 b}, \frac{1}{2 b}\right)$
12. (a) $(f \circ f)(x)=f\left(\frac{x}{2-x}\right)=\frac{\frac{x}{2-x}}{2-\frac{x}{2-x}}$
$(f \circ f)(x)=\frac{x}{4-3 x}$
(b) $\quad P(n): \underbrace{(f \circ f \circ \ldots \circ f)}_{n \text { times }}(x)=F_{n}(x)$
$P(1): f(x)=F_{1}(x)$
LHS $=f(x)=\frac{x}{2-x}$ and RHS $=F_{1}(x)=\frac{x}{2^{1}-\left(2^{1}-1\right) x}=\frac{x}{2-x}$
$\therefore P(1)$ true
assume that $P(k)$ is true, i.e., $\underbrace{(f \circ f \circ \ldots \circ f)}_{k \text { times }}(x)=F_{k}(x)$
consider $P(k+1)$

EITHER

$\underbrace{(f \circ f \circ \ldots \circ f)}_{\mathrm{k}+1 \mathrm{l} \text { times }}(x)=(f \circ \underbrace{f \circ f \circ \ldots \circ f}_{\mathrm{k} \text { times }})(x)=f\left(F_{k}(x)\right)$
$=f\left(\frac{x}{2^{k}-\left(2^{k}-1\right) x}\right)=\frac{\frac{x}{2^{k}-\left(2^{k}-1\right) x}}{2-\frac{x}{2^{k}-\left(2^{k}-1\right) x}}$
$=\frac{x}{2\left(2^{k}-\left(2^{k}-1\right) x\right)-x}=\frac{x}{2^{k+1}-\left(2^{k+1}-2\right) x-x}$

OR

$\underbrace{(f \circ f \circ \ldots \circ f)}_{k+1 \text { times }}(x)=(f \circ \underbrace{f \circ f \circ \ldots \circ f}_{k \text { times }})(x)=F_{k}(f(x))$
(M1)
$=F_{k}\left(\frac{x}{2-x}\right)=\frac{\frac{x}{2-x}}{2^{k}-\left(2^{k}-1\right) \frac{x}{2-x}}$
$=\frac{x}{2^{k+1}-2^{k} x-2^{k} x+x}$

THEN

$=\frac{x}{2^{k+1}-\left(2^{k+1}-1\right) x}=F_{k+1}(x)$
A1
$P(k)$ true implies $P(k+1)$ true, $P(1)$ true so $P(n)$ true for all $n \in \mathbb{Z}^{+}$

Question 12 continued

(c) METHOD 1

$$
\begin{align*}
& x=\frac{y}{2^{n}-\left(2^{n}-1\right) y} \Rightarrow 2^{n} x-\left(2^{n}-1\right) x y=y \tag{M1A1}\\
& \Rightarrow 2^{n} x=\left(\left(2^{n}-1\right) x+1\right) y \Rightarrow y=\frac{2^{n} x}{\left(2^{n}-1\right) x+1} \tag{A1}\\
& F_{n}^{-1}(x)=\frac{2^{n} x}{\left(2^{n}-1\right) x+1} \tag{A1}\\
& F_{n}^{-1}(x)=\frac{x}{\frac{2^{n}-1}{2^{n}} x+\frac{1}{2^{n}}} \tag{M1}\\
& F_{n}^{-1}(x)=\frac{x}{\left(1-2^{-n}\right) x+2^{-n}} \\
& F_{n}^{-1}(x)=\frac{x}{2^{-n}-\left(2^{-n}-1\right) x}
\end{align*}
$$

METHOD 2

$\operatorname{attempt} F_{-n}\left(F_{n}(x)\right)$
$=F_{-n}\left(\frac{x}{2^{n}-\left(2^{n}-1\right) x}\right)=\frac{\frac{x}{2^{n}-\left(2^{n}-1\right) x}}{2^{-n}-\left(2^{-n}-1\right) \frac{x}{2^{n}-\left(2^{n}-1\right) x}}$
$=\frac{x}{2^{-n}\left(2^{n}-\left(2^{n}-1\right) x\right)-\left(2^{-n}-1\right) x}$
Note: Award A1 marks for numerators and denominators.
$=\frac{x}{1}=x$
A1AG

METHOD 3
attempt $F_{n}\left(F_{-n}(x)\right)$
$=F_{n}\left(\frac{x}{2^{-n}-\left(2^{-n}-1\right) x}\right)=\frac{\frac{x}{2^{-n}-\left(2^{-n}-1\right) x}}{2^{n}-\left(2^{n}-1\right) \frac{x}{2^{-n}-\left(2^{-n}-1\right) x}}$
$=\frac{x}{2^{n}\left(2^{-n}-\left(2^{-n}-1\right) x\right)-\left(2^{n}-1\right) x}$
Note: Award $\boldsymbol{A 1}$ marks for numerators and denominators.

$$
=\frac{x}{1}=x
$$

Question 12 continued
(d) (i) $\quad F_{n}(0)=0, F_{n}(1)=1$
(ii) METHOD 1

$$
\begin{aligned}
& 2^{n}-\left(2^{n}-1\right) x-1=\left(2^{n}-1\right)(1-x) \\
& >0 \text { if } 0<x<1 \text { and } n \in \mathbb{Z}^{+} \\
& \text {so } 2^{n}-\left(2^{n}-1\right) x>1 \text { and } F_{n}(x)=\frac{x}{2^{n}-\left(2^{n}-1\right) x}<\frac{x}{1}(<x)
\end{aligned}
$$

$F_{n}(x)=\frac{x}{2^{n}-\left(2^{n}-1\right) x}<x$ for $0<x<1$ and $n \in \mathbb{Z}^{+}$

METHOD 2

$$
\begin{aligned}
& \frac{x}{2^{n}-\left(2^{n}-1\right) x}<x \Leftrightarrow 2^{n}-\left(2^{n}-1\right) x>1 \\
& \Leftrightarrow\left(2^{n}-1\right) x<2^{n}-1 \\
& \left.\Leftrightarrow x<\frac{2^{n}-1}{2^{n}-1}=1 \text { true in the interval }\right] 0,1[\\
& \text { (iii) } B_{n}=2\left(A_{n}-\frac{1}{2}\right)\left(=2 A_{n}-1\right)
\end{aligned}
$$

