

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Monday 7 May 2012 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics SL* information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 17]

- (a) Associativity and commutativity are two of the five conditions for a set *S* with the binary operation * to be an Abelian group; state the other three conditions. [2 marks]
- (b) The Cayley table for the binary operation \odot defined on the set $T = \{p, q, r, s, t\}$ is given below.

\odot	p	q	r	S	t
p	S	r	t	р	q
q	t	S	р	q	r
r	q	t	S	r	р
S	р	q	r	S	t
t	r	p	q	t	S

- (i) Show that exactly three of the conditions for $\{T, \odot\}$ to be an Abelian group are satisfied, but that neither associativity nor commutativity are satisfied.
- (ii) Find the proper subsets of T that are groups of order 2, and comment on your result in the context of Lagrange's theorem.
- (iii) Find the solutions of the equation $(p \odot x) \odot x = x \odot p$. [15 marks]

2. [Maximum mark: 8]

The elements of sets *P* and *Q* are taken from the universal set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. $P = \{1, 2, 3\}$ and $Q = \{2, 4, 6, 8, 10\}$.

- (a) Given that $R = (P \cap Q')'$, list the elements of *R*. [3 marks]
- (b) For a set S, let S^* denote the set of all subsets of S,
 - (i) find P^* ;
 - (ii) find $n(R^*)$. [5 marks]

3. [Maximum mark: 14]

The relation R is defined on the set N such that for $a, b \in \mathbb{N}$, aRb if and only if $a^3 \equiv b^3 \pmod{7}$.

(a)	Show that R is an equivalence relation.	[6 marks]		
(b)	Find the equivalence class containing 0.	[2 marks]		
Denote the equivalence class containing n by C_n .				
(c)	List the first six elements of C_1 .	[3 marks]		
(d)	Prove that $C_n = C_{n+7}$ for all $n \in \mathbb{N}$.	[3 marks]		

4. [*Maximum mark:* 7]

(a)	The function $g: \mathbb{Z} \to \mathbb{Z}$ is defined by $g(n) = n - 1$ for $n \in \mathbb{Z}$. Show that g is neither surjective nor injective.	[2 marks]
(b)	The set S is finite. If the function $f: S \to S$ is injective, show that f is surjective.	[2 marks]
(c)	Using the set \mathbb{Z}^+ as both domain and codomain, give an example of an injective function that is not surjective.	[3 marks]

- 3 -

[5 marks]

5. [Maximum mark: 14]

The group G has a unique element, h, of order 2.

- (a) (i) Show that ghg^{-1} has order 2 for all $g \in G$.
 - (ii) Deduce that gh = hg for all $g \in G$.

Consider the group G under matrix multiplication consisting of four 2×2 matrices, containing a unique element, h, of order 2, where $h = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.

(b) (i) Show that G is cyclic.

(ii) Given the identity $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, find a pair of matrices representing the other two elements of *G*, where each element is of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in \mathbb{C}$. [9 marks]