MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Monday 7 May 2012 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 17]
(a) Associativity and commutativity are two of the five conditions for a set S with the binary operation $*$ to be an Abelian group; state the other three conditions.
(b) The Cayley table for the binary operation \odot defined on the set $T=\{p, q, r, s, t\}$ is given below.

\odot	\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{t}
\boldsymbol{p}	s	r	t	p	q
\boldsymbol{q}	t	s	p	q	r
\boldsymbol{r}	q	t	s	r	p
\boldsymbol{s}	p	q	r	s	t
\boldsymbol{t}	r	p	q	t	s

(i) Show that exactly three of the conditions for $\{T, \odot\}$ to be an Abelian group are satisfied, but that neither associativity nor commutativity are satisfied.
(ii) Find the proper subsets of T that are groups of order 2, and comment on your result in the context of Lagrange's theorem.
(iii) Find the solutions of the equation $(p \odot x) \odot x=x \odot p$.
2. [Maximum mark: 8]

The elements of sets P and Q are taken from the universal set $\{1,2,3,4,5,6,7,8,9,10\} . P=\{1,2,3\}$ and $Q=\{2,4,6,8,10\}$.
(a) Given that $R=\left(P \cap Q^{\prime}\right)^{\prime}$, list the elements of R.
(b) For a set S, let S^{*} denote the set of all subsets of S,
(i) find P^{*};
(ii) find $n\left(R^{*}\right)$.
3. [Maximum mark: 14]

The relation R is defined on the set \mathbb{N} such that for $a, b \in \mathbb{N}, a R b$ if and only if $a^{3} \equiv b^{3}(\bmod 7)$.
(a) Show that R is an equivalence relation.
[6 marks]
(b) Find the equivalence class containing 0 .

Denote the equivalence class containing n by C_{n}.
(c) List the first six elements of C_{1}.
(d) Prove that $C_{n}=C_{n+7}$ for all $n \in \mathbb{N}$.
4. [Maximum mark: 7]
(a) The function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $g(n)=|n|-1$ for $n \in \mathbb{Z}$. Show that g is neither surjective nor injective.
(b) The set S is finite. If the function $f: S \rightarrow S$ is injective, show that f is surjective.
(c) Using the set \mathbb{Z}^{+}as both domain and codomain, give an example of an injective function that is not surjective.
5. [Maximum mark: 14]

The group G has a unique element, h, of order 2 .
(a) (i) Show that $g h g^{-1}$ has order 2 for all $g \in G$.
(ii) Deduce that $g h=h g$ for all $g \in G$.

Consider the group G under matrix multiplication consisting of four 2×2 matrices, containing a unique element, h, of order 2 , where $h=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.
(b) (i) Show that G is cyclic.
(ii) Given the identity $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, find a pair of matrices representing the other two elements of G, where each element is of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, $a, b, c, d \in \mathbb{C}$.

