

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Monday 7 May 2012 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 6]

Use L'Hôpital's Rule to find $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1-x \cos x}{\sin ^{2} x}$.
2. [Maximum mark: 21]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}}{1+x}$, where $x>-1$ and $y=1$ when $x=0$.
(a) Use Euler's method, with a step length of 0.1 , to find an approximate value of y when $x=0.5$.
(b) (i) Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{2 y^{3}-y^{2}}{(1+x)^{2}}$.
(ii) Hence find the Maclaurin series for y, up to and including the term in x^{2}. [8 marks]
(c) (i) Solve the differential equation.
(ii) Find the value of a for which $y \rightarrow \infty$ as $x \rightarrow a$.
3. [Maximum mark: 7]

Find the general solution of the differential equation $t \frac{\mathrm{~d} y}{\mathrm{~d} t}=\cos t-2 y$, for $t>0$.
4. [Maximum mark: 15]

The sequence $\left\{u_{n}\right\}$ is defined by $u_{n}=\frac{3 n+2}{2 n-1}$, for $n \in \mathbb{Z}^{+}$.
(a) Show that the sequence converges to a limit L, the value of which should be stated.
[3 marks]
(b) Find the least value of the integer N such that $\left|u_{n}-L\right|<\varepsilon$, for all $n>N$ where
(i) $\varepsilon=0.1$;
(ii) $\varepsilon=0.00001$.
[4 marks]
(c) For each of the sequences $\left\{\frac{u_{n}}{n}\right\},\left\{\frac{1}{2 u_{n}-2}\right\}$ and $\left\{(-1)^{n} u_{n}\right\}$, determine whether or not it converges.
(d) Prove that the series $\sum_{n=1}^{\infty}\left(u_{n}-L\right)$ diverges.
5. [Maximum mark: 11]
(a) Find the set of values of k for which the improper integral $\int_{2}^{\infty} \frac{\mathrm{d} x}{x(\ln x)^{k}}$ converges. [6 marks]
(b) Show that the series $\sum_{r=2}^{\infty} \frac{(-1)^{r}}{r \ln r}$ is convergent but not absolutely convergent.

