

MATHEMATICS HIGHER LEVEL PAPER 3 – STATISTICS AND PROBABILITY

Friday 4 November 2011 (morning)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 15]

The weight of tea in *Supermug* tea bags has a normal distribution with mean 4.2 g and standard deviation 0.15 g. The weight of tea in *Megamug* tea bags has a normal distribution with mean 5.6 g and standard deviation 0.17 g.

(a)	Find the probability that a randomly chosen <i>Supermug</i> tea bag contains more than 3.9 g of tea.	[2 marks]
(b)	Find the probability that, of two randomly chosen <i>Megamug</i> tea bags, one contains more than 5.4 g of tea and one contains less than 5.4 g of tea.	[4 marks]
(c)	Find the probability that five randomly chosen <i>Supermug</i> tea bags contain a total of less than 20.5 g of tea.	[4 marks]
(d)	Find the probability that the total weight of tea in seven randomly chosen <i>Supermug</i> tea bags is more than the total weight in five randomly chosen <i>Megamug</i> tea bags.	[5 marks]

2. [Maximum mark: 7]

Neil wants the opinion of teachers on a proposal to change the Mathematics HL curriculum. A questionnaire is sent to a large number of teachers asking for their opinions on the proposal. Of the 200 replies he receives, 160 are in favour of the proposal. Assume that these teachers are a random sample from the population.

(a)	Test, at the 5 $\%$ level, the hypothesis that the proportion of the population in favour of the proposal is 0.75 against the alternative that it is more than 0.75.	[4 marks]
(b)	Find a 95 % confidence interval for the proportion of the population in favour of the proposal.	[3 marks]

3. [Maximum mark: 11]

The random variable X represents the lifetime in hours of a battery. The lifetime may be assumed to be a continuous random variable X with a probability density function given by $f(x) = \lambda e^{-\lambda x}$, where $x \ge 0$.

-3-

(a)	Name this distribution and state its mean.	[1 mark]
(b)	Find the cumulative distribution function, $F(x)$, of X.	[3 marks]
(c)	Find the probability that the lifetime of a particular battery is more than twice the mean.	[2 marks]
(d)	Find the median of X in terms of λ .	[3 marks]
(e)	Find the probability that the lifetime of a particular battery lies between the median and the mean.	[2 marks]

4. [Maximum mark: 16]

The random variable X is believed to be modelled by B(5, 0.5). A random sample of size 100 is taken and the observed frequencies are given in the table below.

Value of X	0	1	2	3	4	5
Observed frequency	2	15	S	69 – <i>s</i>	12	2

A χ^2 goodness of fit test is carried out on these data.

- (a) State the null and alternative hypotheses. [1 mark]
- (b) Evaluate the χ^2 statistic in the form $as^2 + bs + c$. [8 marks]
- (c) Find the range of values of *s* that would result in the null hypothesis being accepted at the 10 % level. [7 marks]

5. [Maximum mark: 11]

The continuous random variable U has a uniform distribution on [0, 1]. The random variable X is defined as follows:

$$X = 2U \text{ when } U \le \frac{3}{4}$$
$$X = 4U \text{ when } U > \frac{3}{4}.$$

(a) (i) Explain why X cannot take values in the interval $\frac{3}{2} < X \le 3$.

- (ii) Find $P\left(0 \le X \le \frac{3}{2}\right)$.
- (iii) Find $P(3 < X \le 4)$. [6 marks]
- (b) Find the lower quartile of X. [3 marks]

(c) Find
$$E(X)$$
.

[2 marks]