

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Friday 4 November 2011 (morning)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.

N11/5/MATHL/HP3/ENG/TZ0/SG

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 20]

(a) Consider the following Cayley table for the set $G = \{1, 3, 5, 7, 9, 11, 13, 15\}$ under the operation \times_{16} , where \times_{16} denotes multiplication modulo 16.

×16	1	3	5	7	9	11	13	15
1	1	3	5	7	9	11	13	15
3	3	а	15	5	11	b	7	С
5	5	15	9	3	13	7	1	11
7	7	d	3	1	е	13	f	9
9	9	11	13	g	1	3	5	7
11	11	h	7	13	3	9	i	5
13	13	7	1	11	5	j	9	3
15	15	13	11	9	7	5	3	1

- (i) Find the values of a, b, c, d, e, f, g, h, i and j.
- (ii) Given that \times_{16} is associative, show that the set *G*, together with the operation \times_{16} , forms a group. [7 marks]

(This question continues on the following page)

(Question 1 continued)

(b) The Cayley table for the set $H = \{e, a_1, a_2, a_3, b_1, b_2, b_3, b_4\}$ under the operation *, is shown below.

*	е	a_1	<i>a</i> ₂	<i>a</i> ₃	b_1	b_2	b_3	b_4
е	е	a_1	<i>a</i> ₂	<i>a</i> ₃	b_1	b_2	b_3	b_4
a_1	a_1	a_2	<i>a</i> ₃	е	b_4	b_3	b_1	b_2
<i>a</i> ₂	a_2	a_3	е	a_1	b_2	b_1	b_4	b_3
<i>a</i> ₃	<i>a</i> ₃	е	a_1	a_2	b_3	b_4	b_2	b_1
b_1	b_1	b_3	b_2	b_4	е	a_2	a_1	<i>a</i> ₃
b_2	b_2	b_4	b_1	b_3	a_2	е	<i>a</i> ₃	a_1
b_3	b_3	b_2	b_4	b_1	a_3	a_1	е	a_2
b_4	b_4	b_1	b_3	b_2	a_1	<i>a</i> ₃	a_2	е

(i) Given that * is associative, show that H together with the operation * forms a group.

	(ii) Find two subgroups of order 4.	[8 marks]
(c)	Show that $\{G, \times_{16}\}$ and $\{H, *\}$ are not isomorphic.	[2 marks]
(d)	Show that $\{H, *\}$ is not cyclic.	[3 marks]

2. [Maximum mark: 10]

- (a) Determine, using Venn diagrams, whether the following statements are true.
 - (i) $A' \cup B' = (A \cup B)'$
 - (ii) $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ [6 marks]
- (b) Prove, without using a Venn diagram, that $A \setminus B$ and $B \setminus A$ are disjoint sets. [4 marks]

3. [Maximum mark: 6]

Show that the set, *M*, of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & \frac{1}{a} \end{pmatrix}$, $a \in \mathbb{R}^+$, forms a group under matrix multiplication.

4. [Maximum mark: 14]

The group G has a subgroup H. The relation R is defined on G by xRy if and only if $xy^{-1} \in H$, for x, $y \in G$.

(a) Show that R is an equivalence relation.

[8 marks]

(b) The Cayley table for G is shown below.

	е	а	a^2	b	ab	a^2b
е	е	а	a^2	b	ab	a^2b
a	а	a^2	е	ab	a^2b	b
a^2	a^2	е	а	a^2b	b	ab
b	b	a^2b	ab	е	a^2	a
ab	ab	b	a^2b	а	е	a^2
a^2b	a^2b	ab	b	a^2	а	е

The subgroup H is given as $H = \{e, a^2b\}$.

- (i) Find the equivalence class with respect to R which contains ab.
- (ii) Another equivalence relation ρ is defined on G by $x\rho y$ if and only if $x^{-1}y \in H$, for $x, y \in G$. Find the equivalence class with respect to ρ which contains ab. [6 marks]

5. [Maximum mark: 10]

Consider the functions $f: A \to B$ and $g: B \to C$.

(a)	Show that if both	f and g	are injective, then $g \circ f$ is also injective.	[3 marks]
-----	-------------------	-----------	--	-----------

- (b) Show that if both f and g are surjective, then $g \circ f$ is also surjective. [4 marks]
- (c) Show, using a single counter example, that both of the converses to the results in part (a) and part (b) are false. [3 marks]