

International Baccalaureate Baccalauréat International Bachillerato Internacional 22117208

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Monday 9 May 2011 (morning)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 10]
(a) Find the first three terms of the Maclaurin series for $\ln \left(1+\mathrm{e}^{x}\right)$.
(b) Hence, or otherwise, determine the value of $\lim _{x \rightarrow 0} \frac{2 \ln \left(1+\mathrm{e}^{x}\right)-x-\ln 4}{x^{2}}$.
2. [Maximum mark: 8]

Consider the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}$ where $y=1$ when $x=0$.
(a) Use Euler's method with step length 0.1 to find an approximate value of y when $x=0.4$.
(b) Write down, giving a reason, whether your approximate value for y is greater than or less than the actual value of y.
3. [Maximum mark: 11]

Solve the differential equation

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}+3 x y+2 x^{2}
$$

given that $y=-1$ when $x=1$. Give your answer in the form $y=f(x)$.
4. [Maximum mark: 15]

The integral I_{n} is defined by $I_{n}=\int_{n \pi}^{(n+1) \pi} \mathrm{e}^{-x}|\sin x| \mathrm{d} x$, for $n \in \mathbb{N}$.
(a) Show that $I_{0}=\frac{1}{2}\left(1+\mathrm{e}^{-\pi}\right)$.
(b) By letting $y=x-n \pi$, show that $I_{n}=\mathrm{e}^{-n \pi} I_{0}$.
(c) Hence determine the exact value of $\int_{0}^{\infty} \mathrm{e}^{-x}|\sin x| \mathrm{d} x$.
5. [Maximum mark: 16]

The exponential series is given by $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
(a) Find the set of values of x for which the series is convergent.
(b) (i) Show, by comparison with an appropriate geometric series, that

$$
\mathrm{e}^{x}-1<\frac{2 x}{2-x}, \text { for } 0<x<2
$$

(ii) Hence show that $\mathrm{e}<\left(\frac{2 n+1}{2 n-1}\right)^{n}$, for $n \in \mathbb{Z}^{+}$.
(c) (i) Write down the first three terms of the Maclaurin series for $1-\mathrm{e}^{-x}$ and explain why you are able to state that

$$
1-\mathrm{e}^{-x}>x-\frac{x^{2}}{2}, \text { for } 0<x<2
$$

(ii) Deduce that $\mathrm{e}>\left(\frac{2 n^{2}}{2 n^{2}-2 n+1}\right)^{n}$, for $n \in \mathbb{Z}^{+}$.
(d) Letting $n=1000$, use the results in parts (b) and (c) to calculate the value of e correct to as many decimal places as possible.

