

MATHEMATICS HIGHER LEVEL PAPER 2

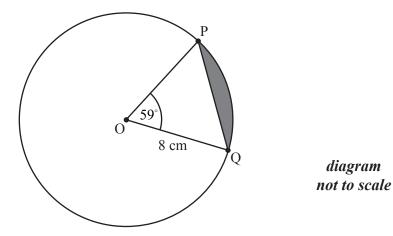
Thursday 5 May 2011 (morning)

2 hours

	C	andio	date	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.


Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 5]

The points P and Q lie on a circle, with centre O and radius 8 cm, such that $P\hat{O}Q = 59^{\circ}$.

chord [PQ].

Find the area of the shaded segment of the circle contained between the arc PQ and the

			"	_	ven that $u_4 = u_n > 10000$.	$= / \text{ and } u_9 = 22$,

 3. [Maximum mark: 6] A skydiver jumps from a stationary balloon at a height of 2000 m above the ground. Her velocity, v ms⁻¹, t seconds after jumping, is given by v = 50(1-e^{-0.2t}). (a) Find her acceleration 10 seconds after jumping. (b) How far above the ground is she 10 seconds after jumping? 	[3 marks]
Her velocity, $v \text{ ms}^{-1}$, t seconds after jumping, is given by $v = 50(1 - e^{-0.2t})$. (a) Find her acceleration 10 seconds after jumping.	[3 marks]
(b) How far above the ground is she 10 seconds after jumping?	<i>[</i> 2 1 :
	[3 marks]

Consider the matrix $A = \begin{pmatrix} \cos 2\theta & \sin \theta \\ -\sin 2\theta & \cos \theta \end{pmatrix}$, for $0 < \theta < 2\pi$.

(a) Show that $\det A = \cos \theta$.

[3 marks]

(b) Find the values of θ for which det $A^2 = \sin \theta$.

[3 marks]

.....

.....

.....

.....

.....

5. [Maximum mark: 7]

Sketch the graph of $f(x) = x + \frac{8x}{x^2 - 9}$. Clearly mark the coordinates of the two maximum points and the two minimum points. Clearly mark and state the equations of the vertical asymptotes and the oblique asymptote.

6.	[Ma:	ximum mark: 6]	
		fish in a lake have weights that are normally distributed with a mean of 1.3 kg and ndard deviation of 0.2 kg.	
	(a)	Determine the probability that a fish which is caught weighs less than 1.4 kg.	[1 mark]
	(b)	John catches 6 fish. Calculate the probability that at least 4 of the fish weigh more than 1.4 kg.	[3 marks]
	(c)	Determine the probability that a fish which is caught weighs less than 1 kg, given that it weighs less than 1.4 kg.	[2 marks]

7. [Maximum mark: 5]

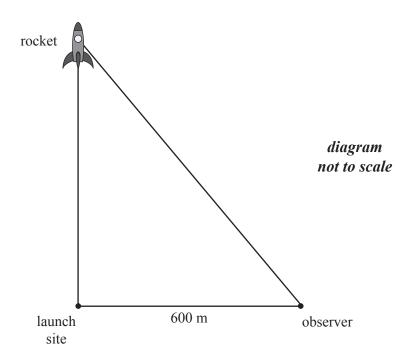
Consider the functions $f(x) = x^3 + 1$ and $g(x) = \frac{1}{x^3 + 1}$. The graphs of y = f(x) and y = g(x) meet at the point (0, 1) and one other point, P.

(a) Find the coordinates of P.

[1 mark]

(b) Calculate the size of the acute angle between the tangents to the two graphs at the point P.

[4 marks]



8.	[Maximum	mark:	67

	of an equilateral triangle, with perimeter P and area A , lie on a circle
with radius r .	Find an expression for $\frac{P}{A}$ in the form $\frac{k}{r}$, where $k \in \mathbb{Z}^+$.

9. [Maximum mark: 6]

A rocket is rising vertically at a speed of $300~\text{m}\,\text{s}^{-1}$ when it is 800~m directly above the launch site. Calculate the rate of change of the distance between the rocket and an observer, who is 600~m from the launch site and on the same horizontal level as the launch site.

											 	 					•											 		
											 	 					•											 		
				_	 													 _		_	 				 _			 	_	

10.	[Maximum	mark:	87

The point P, The tangent to	with coordinate of the curve at P c	es (p, q) , lieuts the axes a	es on the graph of $t(0, m)$ and $(n, 0)$	$x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}, a > 0.$ Show that $m + n = a$.

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 17]

The points P(-1, 2, -3), Q(-2, 1, 0), R(0, 5, 1) and S form a parallelogram, where S is diagonally opposite Q.

(a) Find the coordinates of S.

[2 marks]

- (b) The vector product $\overrightarrow{PQ} \times \overrightarrow{PS} = \begin{pmatrix} -13 \\ 7 \\ m \end{pmatrix}$. Find the value of m. [2 marks]
- (c) Hence calculate the area of parallelogram PQRS.

[2 marks]

(d) Find the Cartesian equation of the plane, Π_1 , containing the parallelogram PQRS.

[3 marks]

(e) Write down the vector equation of the line through the origin (0, 0, 0) that is perpendicular to the plane Π_1 .

[1 mark]

(f) Hence find the point on the plane that is closest to the origin.

[3 marks]

(g) A second plane, Π_2 , has equation x-2y+z=3. Calculate the angle between the two planes.

[4 marks]

Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

12. [Maximum mark: 18]

The number of accidents that occur at a large factory can be modelled by a Poisson distribution with a mean of 0.5 accidents per month.

(a) Find the probability that no accidents occur in a given month.

[1 mark]

(b) Find the probability that no accidents occur in a given 6 month period.

[2 marks]

(c) Find the length of time, in complete months, for which the probability that at least 1 accident occurs is greater than 0.99.

[6 marks]

- (d) To encourage safety the factory pays a bonus of \$1000 into a fund for workers if no accidents occur in any given month, a bonus of \$500 if 1 or 2 accidents occur and no bonus if more than 2 accidents occur in the month.
 - (i) Calculate the expected amount that the company will pay in bonuses each month.
 - (ii) Find the probability that in a given 3 month period the company pays a total of exactly \$2000 in bonuses.

[9 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

13. [Total mark: 25]

Part A [Maximum mark: 8]

Prove by mathematical induction that, for $n \in \mathbb{Z}^+$,

$$1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^3+\ldots+n\left(\frac{1}{2}\right)^{n-1}=4-\frac{n+2}{2^{n-1}}.$$

Part B [Maximum mark: 17]

- (a) Using integration by parts, show that $\int e^{2x} \sin x \, dx = \frac{1}{5} e^{2x} (2 \sin x \cos x) + C$. [6 marks]
- (b) Solve the differential equation $\frac{dy}{dx} = \sqrt{1 y^2} e^{2x} \sin x$, given that y = 0 when x = 0, writing your answer in the form y = f(x). [5 marks]
- (c) (i) Sketch the graph of y = f(x), found in part (b), for $0 \le x \le 1.5$. Determine the coordinates of the point P, the first positive intercept on the x-axis, and mark it on your sketch.
 - (ii) The region bounded by the graph of y = f(x) and the x-axis, between the origin and P, is rotated 360° about the x-axis to form a solid of revolution. Calculate the volume of this solid.

[6 marks]