MARKSCHEME

May 2011

MATHEMATICS

Higher Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$N \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A l}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write ($\boldsymbol{A P}$) against the answer. On the front cover write $-1(\boldsymbol{A P})$. Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the $\boldsymbol{A P}$.
- If the level of accuracy is not specified in the question, apply the $\boldsymbol{A} \boldsymbol{P}$ for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the $\boldsymbol{A P}$. However, do not accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) METHOD 1
$f^{\prime}(x)=q-2 x=0 \quad$ M1
$f^{\prime}(3)=q-6=0$
$q=6$
$f(3)=p+18-9=5$
$p=-4$

METHOD 2

$$
\begin{aligned}
f(x) & =-(x-3)^{2}+5 & \text { M1A1 } \\
& =-x^{2}+6 x-4 & \\
q=6 & , p=-4 & \text { A1A1 }
\end{aligned}
$$

(b) $g(x)=-4+6(x-3)-(x-3)^{2}\left(=-31+12 x-x^{2}\right) \quad$ M1A1

> | Note: | Accept any alternative form which is correct. |
| :--- | :--- |
| | Award M1AO for a substitution of $(x+3)$. |

2. (a) $\boldsymbol{A}^{2}=\left(\begin{array}{cc}2 a & -2 \\ -a & 2 a+1\end{array}\right)$
(M1)A1
(b) METHOD 1

$\operatorname{det} \boldsymbol{A}^{2}$	$=4 a^{2}+2 a-2 a=4 a^{2}$	M1
a	$= \pm 2$	A1A1

METHOD 2

$\operatorname{det} \boldsymbol{A}=-2 a$
M1
$\operatorname{det} \boldsymbol{A}= \pm 4$
$a= \pm 2$
A1A1
3. (a)

Note: Award $\boldsymbol{A 1}$ for intercepts of 0 and 2 and a concave down curve in the given domain .
Note: Award $\boldsymbol{A 0}$ if the cubic graph is extended outside the domain [0, 2].
(b) $\quad \int_{0}^{2} k x(x+1)(2-x) \mathrm{d} x=1$
(M1)
Note: The correct limits and =1 must be seen but may be seen later.

$$
\begin{aligned}
k \int_{0}^{2}\left(-x^{3}+x^{2}+2 x\right) \mathrm{d} x & =1 \\
k\left[-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+x^{2}\right]_{0}^{2} & =1 \\
k\left(-4+\frac{8}{3}+4\right) & =1 \\
k & =\frac{3}{8}
\end{aligned} \quad \boldsymbol{M 1}
$$

4. (a) $\mathrm{AB}=\sqrt{1^{2}+(2-\sqrt{3})^{2}}$

M1

$$
=\sqrt{8-4 \sqrt{3}}
$$

$$
A 1
$$

$$
=2 \sqrt{2-\sqrt{3}}
$$

$$
A 1
$$

(b) METHOD 1

$$
\arg z_{1}=-\frac{\pi}{4} \arg z_{2}=-\frac{\pi}{3}
$$

Note: Allow $\frac{\pi}{4}$ and $\frac{\pi}{3}$.
Note: Allow degrees at this stage.

$$
\begin{aligned}
\text { AÔB } & =\frac{\pi}{3}-\frac{\pi}{4} \\
& =\frac{\pi}{12}\left(\operatorname{accept}-\frac{\pi}{12}\right)
\end{aligned}
$$

Note: Allow $\boldsymbol{F T}$ for final $\boldsymbol{A 1}$.

METHOD 2

attempt to use scalar product or cosine rule MI
$\cos \mathrm{AÔB}=\frac{1+\sqrt{3}}{2 \sqrt{2}} \quad$ AI
$\mathrm{AOB}=\frac{\pi}{12} \quad$ A1
5. (a)

Note: Award A1 for each correct branch with position of asymptotes clearly indicated If $x=2$ is not indicated, only penalise once.
(b)

A3

Note: Award $\boldsymbol{A} \mathbf{1}$ for behaviour at $x=0, \boldsymbol{A} \mathbf{I}$ for intercept at $x=2$, AI for behaviour for large $|x|$.
6. (a) $\overrightarrow{\mathrm{CB}}=\boldsymbol{b}-\boldsymbol{c}, \overrightarrow{\mathrm{AC}}=\boldsymbol{b}+\boldsymbol{c}$

Note: Condone absence of vector notation in (a).
(b) $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{CB}}=(\boldsymbol{b}+\boldsymbol{c}) \cdot(\boldsymbol{b}-\boldsymbol{c})$ M1

$$
\begin{array}{ll}
=|\boldsymbol{b}|^{2}-|\boldsymbol{c}|^{2} & \boldsymbol{A l} \\
=0 \text { since }|\boldsymbol{b}|=|\mathbf{c}| & \boldsymbol{R} \boldsymbol{1}
\end{array}
$$

Note: Only award the $\boldsymbol{A 1}$ and $\boldsymbol{R 1}$ if working indicates that they understand that they are working with vectors.
so $\overrightarrow{A C}$ is perpendicular to $\overrightarrow{C B}$ i.e. $A \hat{C} B$ is a right angle AG
7. (a) area of $\mathrm{AOP}=\frac{1}{2} r^{2} \sin \theta$
(b) $\mathrm{TP}=r \tan \theta$
area of POT $=\frac{1}{2} r(r \tan \theta)$

$$
=\frac{1}{2} r^{2} \tan \theta
$$

(c) area of sector $\mathrm{OAP}=\frac{1}{2} r^{2} \theta$
$\frac{1}{2} r^{2} \sin \theta<\frac{1}{2} r^{2} \theta<\frac{1}{2} r^{2} \tan \theta$ $\sin \theta<\theta<\tan \theta$
8. $x=2 \mathrm{e}^{y}-\frac{1}{\mathrm{e}^{y}}$

Note: The M1 is for switching the variables and may be awarded at any stage in the process and is awarded independently. Further marks do not rely on this mark being gained.

$$
\begin{aligned}
& x \mathrm{e}^{y}=2 \mathrm{e}^{2 y}-1 \\
& 2 \mathrm{e}^{2 y}-x \mathrm{e}^{y}-1=0 \\
& \mathrm{e}^{y}=\frac{x \pm \sqrt{x^{2}+8}}{4} \\
& y=\ln \left(\frac{x \pm \sqrt{x^{2}+8}}{4}\right)
\end{aligned}
$$

therefore $h^{-1}(x)=\ln \left(\frac{x+\sqrt{x^{2}+8}}{4}\right)$
since \ln is undefined for the second solution

Note: Accept $y=\ln \left(\frac{x+\sqrt{x^{2}+8}}{4}\right)$.

Note: The R1 may be gained by an appropriate comment earlier.
9. (a) METHOD 1
$P(3$ defective in first 8$)=\binom{8}{3} \times \frac{4}{15} \times \frac{3}{14} \times \frac{2}{13} \times \frac{11}{12} \times \frac{10}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8}$
Note: Award M1 for multiplication of probabilities with decreasing denominators. Award A1 for multiplication of correct eight probabilities.
Award A1 for multiplying by $\binom{8}{3}$.

$$
\begin{equation*}
=\frac{56}{195} \tag{A1}
\end{equation*}
$$

METHOD 2

$P(3$ defective DVD players from 8$)=\frac{\binom{4}{3}\binom{11}{5}}{\binom{15}{8}}$
Note: Award $\boldsymbol{M 1}$ for an expression of this form containing three combinations.

$$
\begin{aligned}
& =\frac{\frac{4!}{3!1!} \times \frac{11!}{5!6!}}{\frac{15!}{8!7!}} \\
& =\frac{56}{195}
\end{aligned}
$$

(b) $\quad \mathrm{P}\left(9^{\text {th }}\right.$ selected is $4^{\text {th }}$ defective playerl3 defective in first 8$)=\frac{1}{7}$

$$
\begin{aligned}
\mathrm{P}\left(9^{\text {th }} \text { selected is } 4^{\text {th }} \text { defective player }\right) & =\frac{56}{195} \times \frac{1}{7} & \text { M1 } \\
& =\frac{8}{195} & \text { AI }
\end{aligned}
$$

10. (a) let the first three terms of the geometric sequence be given by $u_{1}, u_{1} r, u_{1} r^{2}$

$$
\begin{align*}
& \therefore u_{1}=a+2 d, u_{1} r=a+3 d \text { and } u_{1} r^{2}=a+6 d \\
& \frac{a+6 d}{a+3 d}=\frac{a+3 d}{a+2 d} \\
& a^{2}+8 a d+12 d^{2}=a^{2}+6 a d+9 d^{2} \\
& 2 a+3 d=0 \\
& a=-\frac{3}{2} d
\end{align*}
$$

(b) $u_{1}=\frac{d}{2}, u_{1} r=\frac{3 d}{2},\left(u_{1} r^{2}=\frac{9 d}{2}\right)$ M1
$r=3$ A1
geometric $4^{\text {th }}$ term $u_{1} r^{3}=\frac{27 d}{2}$ A1
$\begin{aligned} \text { arithmetic } 16^{\text {th }} \text { term } a+15 d & =-\frac{3}{2} d+15 d & & \text { MI } \\ & =\frac{27 d}{2} & & \text { AI }\end{aligned}$
Note: Accept alternative methods.

SECTION B

11. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{1}{2} x^{3}$

$$
\begin{aligned}
& x\left(2-\frac{1}{2} x^{2}\right)=0 \\
& x=0, \pm 2 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \text { at }\left(0, \frac{9}{8}\right),\left(-2, \frac{25}{8}\right),\left(2, \frac{25}{8}\right)
\end{aligned}
$$

Note: Award $\boldsymbol{A} 2$ for all three x-values correct with errors/omissions in y-values.
(b) at $x=1$, gradient of tangent $=\frac{3}{2}$

Note: In the following, allow $\boldsymbol{F T}$ on incorrect gradient.
equation of tangent is $y-2=\frac{3}{2}(x-1)\left(y=\frac{3}{2} x+\frac{1}{2}\right)$
meets x-axis when $y=0,-2=\frac{3}{2}(x-1)$
$x=-\frac{1}{3}$
coordinates of T are $\left(-\frac{1}{3}, 0\right)$
(c) gradient of normal $=-\frac{2}{3}$
equation of normal is $y-2=-\frac{2}{3}(x-1)\left(y=-\frac{2}{3} x+\frac{8}{3}\right)$
at $x=0, y=\frac{8}{3}$
Note: In the following, allow FT on incorrect coordinates of T and N .
lengths of $\mathrm{PN}=\sqrt{\frac{13}{9}}, \mathrm{PT}=\sqrt{\frac{52}{9}}$

$$
\text { area of triangle PTN } \begin{aligned}
& =\frac{1}{2} \times \sqrt{\frac{13}{9}} \times \sqrt{\frac{52}{9}} \\
& =\frac{13}{9}\left(\text { or equivalent e.g. } \frac{\sqrt{676}}{18}\right)
\end{aligned}
$$

12. (a) using the factor theorem $z+1$ is a factor
(M1) A1
[2 marks]
(b) (i) METHOD 1
$z^{3}=-1 \Rightarrow z^{3}+1=(z+1)\left(z^{2}-z+1\right)=0$
(M1)
solving $z^{2}-z+1=0$ M1
$z=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1 \pm \mathrm{i} \sqrt{3}}{2}$
A1
therefore one cube root of -1 is γ

METHOD 2

$\gamma^{2}=\left(\frac{1+i \sqrt{3}}{2}\right)^{2}=\frac{-1+i \sqrt{3}}{2}$
$\gamma^{3}=\frac{-1+i \sqrt{3}}{2} \times \frac{1+i \sqrt{3}}{2}=\frac{-1-3}{4}$

$$
=-1
$$

METHOD 3
$\gamma=\frac{1+i \sqrt{3}}{2}=e^{i \frac{\pi}{3}}$
M1A1
$\gamma^{3}=e^{i \pi}=-1$
A1
(ii) METHOD 1
as γ is a root of $z^{2}-z+1=0$ then $\gamma^{2}-\gamma+1=0$
MIR1
$\therefore \gamma^{2}=\gamma-1$
Note: Award M1 for the use of $z^{2}-z+1=0$ in any way. Award $\boldsymbol{R 1}$ for a correct reasoned approach.

METHOD 2

$\gamma^{2}=\frac{-1+i \sqrt{3}}{2}$ M1
$\gamma-1=\frac{1+i \sqrt{3}}{2}-1=\frac{-1+i \sqrt{3}}{2}$ A1

Question 12 continued

(iii) METHOD 1

$$
\begin{align*}
(1-\gamma)^{6} & =\left(-\gamma^{2}\right)^{6} \\
& =(\gamma)^{12} \\
& =\left(\gamma^{3}\right)^{4} \tag{M1}\\
& =(-1)^{4} \\
& =1 \quad \text { A1 }
\end{align*}
$$

METHOD 2

$(1-\gamma)^{6}$
$=1-6 \gamma+15 \gamma^{2}-20 \gamma^{3}+15 \gamma^{4}-6 \gamma^{5}+\gamma^{6}$
M1A1
Note: Award $\boldsymbol{M 1}$ for attempt at binomial expansion.
use of any previous result e.g. $=1-6 \gamma+15 \gamma^{2}+20-15 \gamma+6 \gamma^{2}+1 \quad$ MI
$=1 \quad$ A1

Note: As the question uses the word 'hence', other methods that do not use previous results are awarded no marks.

Question 12 continued

(c) METHOD 1

$$
\begin{aligned}
& \boldsymbol{A}^{2}=\left(\begin{array}{ll}
\gamma & 1 \\
0 & \frac{1}{\gamma}
\end{array}\right)\left(\begin{array}{cc}
\gamma & 1 \\
0 & \frac{1}{\gamma}
\end{array}\right)=\left(\begin{array}{cc}
\gamma^{2} & \gamma+\frac{1}{\gamma} \\
0 & \frac{1}{\gamma^{2}}
\end{array}\right) \\
& \boldsymbol{A}^{2}-\boldsymbol{A}+\boldsymbol{I}=\left(\begin{array}{cc}
\gamma^{2}-\gamma+1 & \gamma+\frac{1}{\gamma}-1 \\
0 & \frac{1}{\gamma^{2}}-\frac{1}{\gamma}+1
\end{array}\right)
\end{aligned}
$$

A1

M1
from part (b)
$\gamma^{2}-\gamma+1=0$
$\gamma+\frac{1}{\gamma}-1=\frac{1}{\gamma}\left(\gamma^{2}-\gamma+1\right)=0$
A1
$\frac{1}{\gamma^{2}}-\frac{1}{\gamma}+1=\frac{1}{\gamma^{2}}\left(\gamma^{2}-\gamma+1\right)=0$
A1
hence $\boldsymbol{A}^{2}-\boldsymbol{A}+\boldsymbol{I}=\mathbf{0}$

METHOD 2

$$
\boldsymbol{A}^{2}=\left(\begin{array}{cc}
\frac{-1+i \sqrt{3}}{2} & 1 \\
0 & \frac{-1-i \sqrt{3}}{2}
\end{array}\right)
$$

AlA1A1

Note: Award 1 mark for each of the non-zero elements expressed in this form.
verifying $\boldsymbol{A}^{2}-\boldsymbol{A}+\boldsymbol{I}=\mathbf{0}$
M1AG

Question 12 continued

(d)
(i) $\boldsymbol{A}^{2}=\boldsymbol{A}-\boldsymbol{I}$
$\begin{array}{rlr}\Rightarrow A^{3} & =A^{2}-A & \text { M1A1 } \\ & =\boldsymbol{A}-\boldsymbol{I}-\boldsymbol{A} & A I \\ & =-\boldsymbol{I} & A G\end{array}$

Note: Allow other valid methods.
(ii) $\boldsymbol{I}=\boldsymbol{A}-\boldsymbol{A}^{2}$
$\boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}-\boldsymbol{A}^{-1} \boldsymbol{A}^{2}$
$\Rightarrow \boldsymbol{A}^{-1}=\boldsymbol{I}-\boldsymbol{A}$

Total [20 marks]
13. (a) (i)

Note: Award $\boldsymbol{A} \mathbf{1}$ for correct $\sin x, \boldsymbol{A 1}$ for correct $\sin 2 x$.
Note: Award $\boldsymbol{A 1 A 0}$ for two correct shapes with $\frac{\pi}{2}$ and/or 1 missing.
Note: Condone graph outside the domain.
(ii) $\sin 2 x=\sin x, 0 \leq x \leq \frac{\pi}{2}$

$$
\begin{aligned}
& 2 \sin x \cos x-\sin x=0 \\
& \sin x(2 \cos x-1)=0 \\
& x=0, \frac{\pi}{3} \quad \text { M1 }
\end{aligned}
$$

Question 13 continued

(iii) \quad area $=\int_{0}^{\frac{\pi}{3}}(\sin 2 x-\sin x) \mathrm{d} x$

Note: Award M1 for an integral that contains limits, not necessarily correct, with $\sin x$ and $\sin 2 x$ subtracted in either order.

$$
\begin{aligned}
& =\left[-\frac{1}{2} \cos 2 x+\cos x\right]_{0}^{\frac{\pi}{3}} \\
& =\left(-\frac{1}{2} \cos \frac{2 \pi}{3}+\cos \frac{\pi}{3}\right)-\left(-\frac{1}{2} \cos 0+\cos 0\right) \\
& =\frac{3}{4}-\frac{1}{2} \\
& =\frac{1}{4}
\end{aligned}
$$

A1

A1
(b) $\int_{0}^{1} \sqrt{\frac{x}{4-x}} \mathrm{~d} x=\int_{0}^{\frac{\pi}{6}} \sqrt{\frac{4 \sin ^{2} \theta}{4-4 \sin ^{2} \theta}} \times 8 \sin \theta \cos \theta \mathrm{~d} \theta \quad$ M1A1A1

Note: Award M1 for substitution and reasonable attempt at finding expression for $\mathrm{d} x$ in terms of $\mathrm{d} \boldsymbol{\theta}$, first $\boldsymbol{A 1}$ for correct limits, second $\boldsymbol{A 1}$ for correct substitution for $\mathrm{d} x$.
$\int_{0}^{\frac{\pi}{6}} 8 \sin ^{2} \theta \mathrm{~d} \theta$
$\int_{0}^{\frac{\pi}{6}} 4-4 \cos 2 \theta \mathrm{~d} \theta$ M1
$=[4 \theta-2 \sin 2 \theta]_{0}^{\frac{\pi}{6}} \quad \boldsymbol{A I}$
$=\left(\frac{2 \pi}{3}-2 \sin \frac{\pi}{3}\right)-0$
$=\frac{2 \pi}{3}-\sqrt{3}$
A1

Question 13 continued

(c) (i)

from the diagram above
the shaded area $=\int_{0}^{a} f(x) \mathrm{d} x=a b-\int_{0}^{b} f^{-1}(y) \mathrm{d} y$ R1

$$
=a b-\int_{0}^{b} f^{-1}(x) \mathrm{d} x
$$

(ii) $\quad f(x)=\arcsin \frac{x}{4} \Rightarrow f^{-1}(x)=4 \sin x$ A1

$$
\int_{0}^{2} \arcsin \left(\frac{x}{4}\right) \mathrm{d} x=\frac{\pi}{3}-\int_{0}^{\frac{\pi}{6}} 4 \sin x \mathrm{~d} x
$$

Note: Award $\boldsymbol{A} \boldsymbol{1}$ for the limit $\frac{\pi}{6}$ seen anywhere, $\boldsymbol{A} \boldsymbol{1}$ for all else correct.

$$
\begin{aligned}
& =\frac{\pi}{3}-[-4 \cos x]_{0}^{\frac{\pi}{6}} \\
& =\frac{\pi}{3}-4+2 \sqrt{3}
\end{aligned}
$$

Note: Award no marks for methods using integration by parts.
[8 marks]
Total [25 marks]

