MARKSCHEME

May 2011

MATHEMATICS

Higher Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$N \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\mathbf{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then $\boldsymbol{F T}$ marks should be awarded if appropriate.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g . \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write ($\boldsymbol{A P}$) against the answer. On the front cover write $-1(\boldsymbol{A P})$. Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the $\boldsymbol{A P}$.
- If the level of accuracy is not specified in the question, apply the $\boldsymbol{A} \boldsymbol{P}$ for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the $\boldsymbol{A P}$. However, do not accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) (i) $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)=0.7$

$$
\text { (ii) } \quad \begin{aligned}
\mathrm{P}(A \cup B) & =\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\
& =\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B) \\
& =0.3+0.4-0.12=0.58
\end{aligned}
$$

(b) $\mathrm{P}(A \cap B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cup B)$

$$
=0.3+0.4-0.6=0.1
$$

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}
$$

$$
=\frac{0.1}{0.4}=0.25
$$

2. METHOD 1

$$
\begin{array}{rlr}
z & =(2-\mathrm{i})(z+2) & \text { MI } \\
& =2 z+4-\mathrm{i} z-2 \mathrm{i} & \\
z(1-\mathrm{i})=-4+2 \mathrm{i} & \\
z & =\frac{-4+2 \mathrm{i}}{1-\mathrm{i}} & \boldsymbol{A 1} \\
z & =\frac{-4+2 \mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}} & \boldsymbol{M 1} \\
& =-3-\mathrm{i} & \boldsymbol{A I}
\end{array}
$$

METHOD 2

let $z=a+\mathrm{i} b$

$$
\begin{aligned}
& \frac{a+\mathrm{i} b}{a+i b+2}=2-\mathrm{i} \\
& a+\mathrm{i} b=(2-\mathrm{i})((a+2)+\mathrm{i} b) \\
& a+\mathrm{i} b=2(a+2)+2 b \mathrm{i}-\mathrm{i}(a+2)+b \\
& a+\mathrm{i} b=2 a+b+4+(2 b-a-2) \mathrm{i}
\end{aligned}
$$

M1
attempt to equate real and imaginary parts
$a=2 a+b+4(\Rightarrow a+b+4=0)$
and $b=2 b-a-2(\Rightarrow-a+b-2=0)$
Note: Award Al for two correct equations.

$$
\begin{aligned}
& b=-1 ; a=-3 \\
& z=-3-\mathrm{i}
\end{aligned}
$$

A1
3. (a) $u_{1}=27$

$\frac{81}{2}=\frac{27}{1-r}$	M1
$r=\frac{1}{3}$	A1

(b) $\quad v_{2}=9$
$v_{4}=1$
$2 d=-8 \Rightarrow d=-4$
$v_{1}=13$
$\frac{N}{2}(2 \times 13-4(N-1))>0 \quad$ (accept equality)
$\frac{N}{2}(30-4 N)>0$
$N(15-2 N)>0$
$N<7.5$
$N=7$
Note: $\quad 13+9+5+1-3-7-11>0 \Rightarrow N=7$ or equivalent receives full marks.
4. (a) $\overrightarrow{\mathrm{AB}}=\boldsymbol{b}-\boldsymbol{a}$

A1
$\overrightarrow{C B}=\boldsymbol{a}+\boldsymbol{b}$
(b) $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CB}}=(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}+\boldsymbol{a})$ M1
$=|\boldsymbol{b}|^{2}-|\boldsymbol{a}|^{2} \quad$ A1
$=0$ since $|\boldsymbol{b}|=|\boldsymbol{a}| \quad \boldsymbol{R 1}$
Note: Only award the $\boldsymbol{A 1}$ and $\boldsymbol{R 1}$ if working indicates that they understand that they are working with vectors.
so $\overrightarrow{A B}$ is perpendicular to $\overrightarrow{C B}$ i.e. $A \hat{B C}$ is a right angle
5. (a) $\frac{\sin 2 \theta}{1+\cos 2 \theta}=\frac{2 \sin \theta \cos \theta}{1+2 \cos ^{2} \theta-1}$

Note: Award M1 for use of double angle formulae.

$$
\begin{align*}
& =\frac{2 \sin \theta \cos \theta}{2 \cos ^{2} \theta} \tag{A1}\\
& =\frac{\sin \theta}{\cos \theta} \\
& =\tan \theta
\end{align*}
$$

${ }^{A} \boldsymbol{G}$
(b) $\tan \frac{\pi}{8}=\frac{\sin \frac{\pi}{4}}{1+\cos \frac{\pi}{4}}$

$$
\cot \frac{\pi}{8}=\frac{1+\cos \frac{\pi}{4}}{\sin \frac{\pi}{4}}
$$

M1

$$
=\frac{1+\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}
$$

$$
=1+\sqrt{2}
$$

6. $\quad R$ is 'rabbit with the disease'
P is 'rabbit testing positive for the disease'

(a) $\mathrm{P}(P)=\mathrm{P}(R \cap P)+\mathrm{P}\left(R^{\prime} \cap P\right)$

$$
\begin{array}{lr}
=0.01 \times 0.99+0.99 \times 0.001 & \text { M1 } \\
=0.01089(=0.0109) & \text { A1 }
\end{array}
$$

Note: Award M1 for a correct tree diagram with correct probability values shown.
(b) $\mathrm{P}\left(R^{\prime} \mid P\right)=\frac{0.001 \times 0.99}{0.001 \times 0.99+0.01 \times 0.99}\left(=\frac{0.00099}{0.01089}\right)$ M1 A1

$$
\frac{0.00099}{0.01089}<\frac{0.001}{0.01}=10 \% \quad(\text { or other valid argument })
$$

7. METHOD 1

$\operatorname{area}=\int_{0}^{\sqrt{3}} \arctan x \mathrm{~d} x$
A1
attempting to integrate by parts
M1

$$
\begin{aligned}
& =[x \arctan x]_{0}^{\sqrt{3}}-\int_{0}^{\sqrt{3}} x \frac{1}{1+x^{2}} \mathrm{~d} x \\
& =[x \arctan x]_{0}^{\sqrt{3}}-\left[\frac{1}{2} \ln \left(1+x^{2}\right)\right]_{0}^{\sqrt{3}}
\end{aligned}
$$

A1A1

Note: Award $\boldsymbol{A 1}$ even if limits are absent.

$$
\begin{gathered}
=\frac{\pi}{\sqrt{3}}-\frac{1}{2} \ln 4 \\
\left(=\frac{\pi \sqrt{3}}{3}-\ln 2\right)
\end{gathered}
$$

METHOD 2

$$
\begin{array}{lc}
\text { area }=\frac{\pi \sqrt{3}}{3}-\int_{0}^{\frac{\pi}{3}} \tan y \mathrm{~d} y & \text { M1A1A1 } \\
=\frac{\pi \sqrt{3}}{3}+[\ln |\cos y|]_{0}^{\frac{\pi}{3}} & \text { M1A1 } \\
=\frac{\pi \sqrt{3}}{3}+\ln \frac{1}{2}\left(=\frac{\pi \sqrt{3}}{3}-\ln 2\right) & \boldsymbol{A 1}
\end{array}
$$

8. (a) (i) $(g \circ f)(x)=\frac{1}{2 x+3}, x \neq-\frac{3}{2}$ (or equivalent)
(ii) $\quad(f \circ g)(x)=\frac{2}{x}+3, x \neq 0($ or equivalent $)$
(b) EITHER

$$
\begin{aligned}
& f(x)=\left(g^{-1} \circ f \circ g\right)(x) \Rightarrow(g \circ f)(x)=(f \circ g)(x) \\
& \frac{1}{2 x+3}=\frac{2}{x}+3
\end{aligned}
$$

OR

$$
\left(g^{-1} \circ f \circ g\right)(x)=\frac{1}{\frac{2}{x}+3}
$$

$$
2 x+3=\frac{1}{\frac{2}{x}+3}
$$

THEN

$$
\begin{array}{ll}
6 x^{2}+12 x+6=0(\text { or equivalent }) & \boldsymbol{A 1} \\
x=-1, y=1 & (\text { coordinates are }(-1,1))
\end{array}
$$

9. attempt at implicit differentiation
$\mathrm{e}^{(x+y)}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=-\sin (x y)\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)$
let $x=0, y=0$
$\mathrm{e}^{0}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-1$
let $x=\sqrt{2 \pi}, y=-\sqrt{2 \pi}$
$\mathrm{e}^{0}\left(1+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=-\sin (-2 \pi)\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)=0$
so $\frac{\mathrm{d} y}{\mathrm{~d} x}=-1$
A1
since both points lie on the line $y=-x$ this is a common tangent

Note: $y=-x$ must be seen for the final $\boldsymbol{R 1}$. It is not sufficient to note that the gradients are equal.
10. (a) $f(x-a) \neq b$
$x \neq 0$ and $x \neq 2 a$ (or equivalent)
(b) vertical asymptotes $x=0, x=2 a$ A1
horizontal asymptote $y=0$
Note: Equations must be seen to award these marks.
maximum $\left(a,-\frac{1}{b}\right)$
Note: Award $\boldsymbol{A 1}$ for correct x-coordinate and $\boldsymbol{A 1}$ for correct y-coordinate. one branch correct shape A1
other 2 branches correct shape

SECTION B

11. (a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}-4 \\ -1 \\ 3\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}4 \\ -3 \\ 1\end{array}\right)$

A1A1

Note: Accept row vectors.
(b) $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ -4 & -1 & 3 \\ 4 & -3 & 1\end{array}\right|=\left(\begin{array}{c}8 \\ 16 \\ 16\end{array}\right)$
normal $\boldsymbol{n}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ so $\boldsymbol{r} \cdot\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
(M1)
$x+2 y+2 z=7$
Note: If attempt to solve by a system of equations:
Award $\boldsymbol{A 1}$ for 3 correct equations, $\boldsymbol{A 1}$ for eliminating a variable and $\boldsymbol{A} \mathbf{2}$ for the correct answer.
(c) $\quad \boldsymbol{r}=\left(\begin{array}{l}5 \\ 3 \\ 7\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ (or equivalent)

$$
1(5+\lambda)+2(3+2 \lambda)+2(7+2 \lambda)=7
$$

M1

$$
9 \lambda=-18
$$

$$
\lambda=-2
$$

Note: $\lambda=-\frac{1}{4}$ if $\left(\begin{array}{c}8 \\ 16 \\ 16\end{array}\right)$ is used.

$$
\begin{align*}
\text { distance } & =2 \sqrt{1^{2}+2^{2}+2^{2}} \tag{M1}\\
& =6
\end{align*}
$$

Question 11 continued

(d) (i) area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\frac{1}{2} \sqrt{8^{2}+16^{2}+16^{2}}$

$$
\begin{equation*}
=12\left(\text { accept } \frac{1}{2} \sqrt{576}\right) \tag{M1}
\end{equation*}
$$

(ii) EITHER

$$
\begin{align*}
\text { volume } & =\frac{1}{3} \times \text { area } \times \text { height } \tag{M1}\\
& =\frac{1}{3} \times 12 \times 6=24
\end{align*}
$$

OR

$$
\begin{aligned}
\text { volume } & =\frac{1}{6}(\overrightarrow{\mathrm{AD}} \cdot(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}})) \\
& =24
\end{aligned}
$$

$$
M 1
$$

(e) $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\sqrt{8^{2}+16^{2}+16^{2}}$

$$
\begin{align*}
|\overrightarrow{\mathrm{AC}} \times \overrightarrow{\mathrm{AD}}| & \left.=\| \begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
4 & -3 & 1 \\
4 & 1 & 6
\end{array} \right\rvert\, \\
& =|-19 \boldsymbol{i}-20 \boldsymbol{j}+16 \boldsymbol{k}|
\end{align*}
$$

EITHER

$$
\frac{1}{2} \sqrt{19^{2}+20^{2}+16^{2}}>\frac{1}{2} \sqrt{8^{2}+16^{2}+16^{2}}
$$

therefore since area of ACD bigger than area ABC implies that B is closer to opposite face than D

OR

correct calculation of second distance as $\frac{144}{\sqrt{19^{2}+20^{2}+16^{2}}}$
which is smaller than 6
R1
Note: Only award final $\boldsymbol{R} \mathbf{1}$ in each case if the calculations are correct.
12. (a) (i) $f^{\prime}(x)=\frac{x \frac{1}{x}-\ln x}{x^{2}}$

M1A1
so $f^{\prime}(x)=0$ when $\ln x=1$, i.e. $x=\mathrm{e}$
(ii) $f^{\prime}(x)>0$ when $x<\mathrm{e}$ and $f^{\prime}(x)<0$ when $x>\mathrm{e}$ R1 hence local maximum

Note: Accept argument using correct second derivative.
(iii) $y \leq \frac{1}{\mathrm{e}}$

Note: May be seen in part (a).
$f^{\prime \prime}(x)=0$
$-3+2 \ln x=0$
$x=\mathrm{e}^{\frac{3}{2}}$
since $f^{\prime \prime}(x)<0$ when $x<\mathrm{e}^{\frac{3}{2}}$ and $f^{\prime \prime}(x)>0$ when $x>\mathrm{e}^{\frac{3}{2}}$
then point of inflexion $\left(\mathrm{e}^{\frac{3}{2}}, \frac{3}{2 \mathrm{e}^{\frac{3}{2}}}\right)$
(c)

Note: Award $\boldsymbol{A 1}$ for the maximum and intercept, $\boldsymbol{A} \mathbf{1}$ for a vertical asymptote and $\boldsymbol{A I}$ for shape (including turning concave up).

Question 12 continued

(d) (i)

Note: Award $\boldsymbol{A 1}$ for each correct branch.
(ii) all real values
(iii)

(M1)(A1)

Note: Award (M1)(A1) for sketching the graph of h, ignoring any graph of g.

$$
\left.-\mathrm{e}^{2}<x<-1 \quad \text { (accept } x<-1\right)
$$

13. (a) $(\cos \theta+\mathrm{i} \sin \theta)^{3}=\cos ^{3} \theta+3 \cos ^{2} \theta(\mathrm{i} \sin \theta)+3 \cos \theta(\mathrm{i} \sin \theta)^{2}+(\mathrm{i} \sin \theta)^{3}$
(b) from De Moivre's theorem

$$
\begin{aligned}
& (\cos \theta+\mathrm{i} \sin \theta)^{3}=\cos 3 \theta+\mathrm{i} \sin 3 \theta \\
& \cos 3 \theta+\mathrm{i} \sin 3 \theta=\left(\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta\right)+\mathrm{i}\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

equating real parts

$$
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

$$
=\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right)
$$

$$
A 1
$$

$$
=\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta
$$

$$
=4 \cos ^{3} \theta-3 \cos \theta
$$

Note: Do not award marks if part (a) is not used.
(c) $\quad(\cos \theta+i \sin \theta)^{5}=$
$\cos ^{5} \theta+5 \cos ^{4} \theta(\mathrm{i} \sin \theta)+10 \cos ^{3} \theta(\mathrm{i} \sin \theta)^{2}+10 \cos ^{2} \theta(\mathrm{i} \sin \theta)^{3}+5 \cos \theta(\mathrm{i} \sin \theta)^{4}+(\mathrm{i} \sin \theta)^{5}$
from De Moivre's theorem
$\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \quad$ M1
$=\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \quad$ A1
$=\cos ^{5} \theta-10 \cos ^{3} \theta+10 \cos ^{5} \theta+5 \cos \theta-10 \cos ^{3} \theta+5 \cos ^{5} \theta$
$\therefore \cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
AG
Note: If compound angles used in (b) and (c), then marks can be allocated in (c) only.
(d) $\cos 5 \theta+\cos 3 \theta+\cos \theta$

$$
=\left(16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta\right)+\left(4 \cos ^{3} \theta-3 \cos \theta\right)+\cos \theta=0 \quad \boldsymbol{M 1}
$$

$16 \cos ^{5} \theta-16 \cos ^{3} \theta+3 \cos \theta=0$ A1
$\cos \theta\left(16 \cos ^{4} \theta-16 \cos ^{2} \theta+3\right)=0$
$\cos \theta\left(4 \cos ^{2} \theta-3\right)\left(4 \cos ^{2} \theta-1\right)=0$ A1
$\therefore \cos \theta=0 ; \pm \frac{\sqrt{3}}{2} ; \pm \frac{1}{2}$ A1
$\therefore \theta= \pm \frac{\pi}{6} ; \pm \frac{\pi}{3} ; \pm \frac{\pi}{2}$

Question 13 continued

(e) $\cos 5 \theta=0$

$$
\begin{align*}
& 5 \theta=\ldots \frac{\pi}{2} ;\left(\frac{3 \pi}{2} ; \frac{5 \pi}{2}\right) ; \frac{7 \pi}{2} ; \ldots \tag{M1}\\
& \theta=\ldots \frac{\pi}{10} ;\left(\frac{3 \pi}{10} ; \frac{5 \pi}{10}\right) ; \frac{7 \pi}{10} ; \ldots \tag{M1}
\end{align*}
$$

Note: These marks can be awarded for verifications later in the question.

$$
\begin{aligned}
& \text { now } \operatorname{consider~} 16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta=0 \\
& \cos \theta\left(16 \cos ^{4} \theta-20 \cos ^{2} \theta+5\right)=0 \\
& \cos ^{2} \theta=\frac{20 \pm \sqrt{400-4(16)(5)}}{32} ; \cos \theta=0 \\
& \cos \theta= \pm \sqrt{\frac{20 \pm \sqrt{400-4(16)(5)}}{32}} \\
& \cos \frac{\pi}{10}=\sqrt{\frac{20+\sqrt{400-4(16)(5)}}{32}} \text { since max value of cosine } \Rightarrow \text { angle closest to zero } \\
& \cos \frac{\pi}{10}=\sqrt{\frac{4.5+4 \sqrt{25-4(5)}}{4.8}}=\sqrt{\frac{5+\sqrt{5}}{8}} \\
& \cos \frac{7 \pi}{10}=-\sqrt{\frac{5-\sqrt{5}}{8}} \quad \text { A1 }
\end{aligned}
$$

