MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Monday 15 November 2010 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 8]

Let R be a relation on the set \mathbb{Z} such that $a R b \Leftrightarrow a b \geq 0$, for $a, b \in \mathbb{Z}$.
(a) Determine whether R is
(i) reflexive;
(ii) symmetric;
(iii) transitive.
(b) Write down with a reason whether or not R is an equivalence relation.
2. [Maximum mark: 16]
(a) Let $f: \mathbb{Z} \times \mathbb{R} \rightarrow \mathbb{R}, f(m, x)=(-1)^{m} x$. Determine whether f is
(i) surjective;
(ii) injective.
(b) $\quad P$ is the set of all polynomials such that $P=\left\{\sum_{i=0}^{n} a_{i} x^{i} \mid n \in \mathbb{N}\right\}$.

Let $g: P \rightarrow P, g(p)=x p$. Determine whether g is
(i) surjective;
(ii) injective.
(c) Let $h: \mathbb{Z} \rightarrow \mathbb{Z}^{+}, h(x)=\left\{\begin{array}{r}2 x, x>0 \\ 1-2 x, x \leq 0\end{array}\right.$. Determine whether h is
(i) surjective;
(ii) injective.
(d) Write down which, if any, of the above functions are bijective.
3. [Maximum mark: 8]

Prove that for sets A and B

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

4. [Maximum mark: 20]

Set $S=\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and a binary operation \circ on S is defined as $x_{i} \circ x_{j}=x_{k}$, where $i+j \equiv k(\bmod 6)$.
(a) (i) Construct the Cayley table for $\{S, \circ\}$ and hence show that it is a group.
(ii) Show that $\{S, \circ\}$ is cyclic.
(b) Let $\{G, *\}$ be an Abelian group of order 6. The element $a \in G$ has order 2 and the element $b \in G$ has order 3 .
(i) Write down the six elements of $\{G, *\}$.
(ii) Find the order of $a * b$ and hence show that $\{G, *\}$ is isomorphic to $\{S, \circ\}$. [9 marks]
5. [Maximum mark: 8]

Let $\{G, *\}$ be a finite group that contains an element a (that is not the identity element) and $H=\left\{a^{n} \mid n \in \mathbb{Z}^{+}\right\}$, where $a^{2}=a * a, a^{3}=a * a * a$ etc.

Show that $\{H, *\}$ is a subgroup of $\{G, *\}$.

