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instructions to candidates

	Do not open this examination paper until instructed to do so.
	Answer all the questions.
	Unless otherwise stated in the question, all numerical answers must be given exactly or correct 

to three significant figures.
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Please start each question on a new page. Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working. 

1.	 [Maximum mark:  7]
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2.	 [Maximum mark:  16]

	 Determine whether or not the following series converge.
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3.	 [Maximum mark:  9]

	 (a)	 Using the Maclaurin series for the function ex , write down the first four terms of 

the Maclaurin series for e
− x2
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	 (b)	 Hence find the first four terms of the series for e d
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	 (c)	 Use the result from part (b) to find an approximate value for 1
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4.	 [Maximum mark:  13]

	 Solve the differential equation 
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	 given that y =1 when x = 0 .  Give your answer in the form y f x= ( ) .

5.	 [Maximum mark:  15]

	 Consider the infinite series 
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	 (a)	 Show that the series converges. [4 marks]

	 (b)	 Determine if the series converges absolutely or conditionally. [11 marks]


