

MARKSCHEME

November 2010

MATHEMATICS SETS, RELATIONS AND GROUPS

Higher Level

Paper 3

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- A Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding M marks.
- (A) Marks awarded for an **Answer** or for **Accuracy**; may be implied by **correct** subsequent working.
- **R** Marks awarded for clear **Reasoning**.
- N Marks awarded for **correct** answers if **no** working shown.
- **AG** Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the **breakdown** of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for **correct** answers where there is **no** working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write -1(MR) next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks
- If the MR leads to an inappropriate value (e.g. $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** . . . **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x - 3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 = (-10\cos(5x-3))$$

Award A1 for $(2\cos(5x-3))$ 5, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized **once only IN THE PAPER** for an accuracy error **(AP)**. Award the marks as usual then write **(AP)** against the answer. On the **front** cover write -l(AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the AP.
- If the level of accuracy is not specified in the question, apply the *AP* for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the **AP**. However, do **not** accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation.

Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

1.	(a)	(i)	$a^2 \ge 0$ for all $a \in \mathbb{Z}$, hence R is reflexive	R1	
		(ii)	$aRb \Rightarrow ab \ge 0$	<i>M1</i>	
		(11)	$\Rightarrow ba \ge 0$	R1	
			$\Rightarrow bRa$, hence R is symmetric	A1	
		(iii)	aRb and $bRc \Rightarrow ab \ge 0$ and $bc \ge 0$, is aRc ?	<i>M</i> 1	
		,	no, for example, $-3R0$ and $0R5$, but $-3R5$ is not true	A1	
			aRc is not generally true, hence R is not transitive	A1	[7 marks]
					[/ murksj
	(b)	R do	es not satisfy all three properties, hence R is not an equivalence relation	R1	[1 mark]
				Tota	ıl [8 marks]
2.	(a)	(i)	let $x \in \mathbb{R}$		
			for example, $f(0, x) = x$,	M1	
			hence f is surjective	A1	
		(ii)	for example, $f(2, 3) = f(4, 3) = 3$, but $(2, 3) \neq (4, 3)$	M1	
			hence f is not injective	A1	
					[4 marks]
	(b)	(i)	there is no element of P such that $g(p) = 7$, for example	<i>R1</i>	
			hence g is not surjective	A1	
		(ii)	$g(p) = g(q) \Rightarrow xp = xq \Rightarrow p = q$, hence g is injective	M1A1	
					[4 marks]
	(c)	(i)	for $x > 0$, $h(x) = 2, 4, 6, 8$	<i>A1</i>	
	(-)	()	for $x \le 0$, $h(x) = 1, 3, 5, 7$	A1	
			therefore h is surjective	A1	
		(ii)	for $h(x) = h(y)$, since an odd number cannot equal an even number	r.	
			there are only two possibilities:	R1	
			$x, y > 0, 2x = 2y \Rightarrow x = y;$	<i>A1</i>	
			$x, y \le 0, 1-2x=1-2y \Rightarrow x=y$	A1	
			therefore <i>h</i> is injective	A1	
		Not	te: This can be demonstrated in a variety of ways.		[7 marks]
	(4)	ac 1-	is the only hijection	41	· •
	(d)	so n	is the only bijection	A1	[1 mark]
				T.4.1	
				1 otal	[16 marks]

3.	to show that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$	
	let $(a, b) \in A \times (B \cap C)$	(M1)
	$\Rightarrow a \in A \text{ and } b \in B \cap C$	<i>A1</i>
	$\Rightarrow a \in A$, and $b \in B$ and $b \in C$	A1
	\Rightarrow $(a, b) \in A \times B$ and $(a, b) \in A \times C$	<i>A1</i>
	$\Rightarrow (a, b) \in (A \times B) \cap (A \times C)$	R1
	to show that $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$	
	let $(a,b) \in (A \times B) \cap (A \times C)$	
	\Rightarrow $(a, b) \in A \times B$, and $(a, b) \in A \times C$	<i>A1</i>
	$\Rightarrow a \in A \text{ and } b \in B, \text{ and } a \in A \text{ and } b \in C$	
	$\Rightarrow a \in A \text{ and } b \in B \cap C$	A1
	$(a,b) \in A \times (B \cap C)$	R1
	hence the two sets are equal	AG

Note: The first five marks are awarded for the first half of the proof that the candidate attempts.

[8 marks]

4. (a) (i) Cayley table for $\{S, \circ\}$

•	x_0	\boldsymbol{x}_1	\boldsymbol{x}_{2}	x_3	x_4	x_5
x_0	x_0	x_1	x_2	x_3	x_4	x_5
x_1	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_0
\boldsymbol{x}_2	x_2	x_3	\mathcal{X}_4	x_5	x_0	x_1
x_3	x_3	x_4	x_5	x_0	x_1	x_2
x_4	x_4	x_5	x_0	x_1	x_2	x_3
x_5	x_5	x_0	x_1	x_2	x_3	x_4

A4

Note: Award *A4* for no errors, *A3* for one error, *A2* for two errors, *A1* for three errors and *A0* for four or more errors.

S is closed under \circ	A1
x_0 is the identity	A1
x_0 and x_3 are self-inverses,	A1
x_2 and x_4 are mutual inverses and so are x_1 and x_5	A1
modular addition is associative	<i>A1</i>
hence, $\{S, \circ\}$ is a group	AG

(ii) the order of x_1 (or x_5) is 6, hence there exists a generator, and $\{S, \circ\}$ is a cyclic group *A1R1*

[11 marks]

continued ...

Question 4 continued

(b)	(i)	e, a, b, ab	A1
		and b^2 , ab^2	AIAI

Note: Accept ba and b^2a .

(ii)	$(ab)^2 = b^2$	M1A1
	$(ab)^3 = a$	A1
	$(ab)^4 = b$	A1
	hence order is 6	<i>A1</i>
	groups G and S have the same orders and both are cyclic	<i>R1</i>
	hence isomorphic	AG

[9 marks]

Total [20 marks]

5. since G is closed, H will be a subset of G

closure:
$$p, q \in H \Rightarrow p = a^r, q = a^s, r, s \in \mathbb{Z}^+$$

$$p * q = a^r * a^s = a^{r+s}$$

$$A1$$

$$r + s \in \mathbb{Z}^+ \Rightarrow p * q \in H \text{, hence } H \text{ is closed}$$

$$R1$$
associativity follows since * is associative on G

$$(R1)$$

EITHER

identity: let the order of a in G be $m \in \mathbb{Z}^+$, $m \ge 2$	M1
then $a^m = e \in H$	R1
inverses: $a^{m-1} * a = e \Rightarrow a^{m-1}$ is the inverse of a	A1
$(a^{m-1})^n * a^n = e$, showing that a^n has an inverse in H	<i>R1</i>
hence H is a subgroup of G	AG

OR

since (G, *) is a finite group, and H is a non-empty closed subset of G, then (H, *) is a subgroup of (G, *)

Note: To receive the **R4**, the candidate must explicitly state the theorem, *i.e.* the three given conditions, and conclusion.

[8 marks]