International Baccalaureate Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2010

MATHEMATICS

Higher Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of $I B$ Cardiff.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized once only IN THE PAPER for an accuracy error (AP). Award the marks as usual then write ($\boldsymbol{A P}$) against the answer. On the front cover write $-1(\boldsymbol{A P})$. Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the $\boldsymbol{A P}$.
- If the level of accuracy is not specified in the question, apply the $\boldsymbol{A} \boldsymbol{P}$ for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the $\boldsymbol{A P}$. However, do not accept answers to one significant figure without working.

11
 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. EITHER

$|x-1|>|2 x-1| \Rightarrow(x-1)^{2}>(2 x-1)^{2}$
$x^{2}-2 x+1>4 x^{2}-4 x+1$
$3 x^{2}-2 x<0$
$0<x<\frac{2}{3}$
Note: Award A1A0 for incorrect inequality signs.

OR

$$
\begin{array}{ll}
|x-1|>|2 x-1| & \\
x-1=2 x-1 & x-1=1-2 x \\
-x=0 & 3 x=2 \\
x=0 & x=\frac{2}{3}
\end{array}
$$

Note: Award $\boldsymbol{M 1}$ for any attempt to find a critical value. If graphical methods are used, award M1 for correct graphs, $\boldsymbol{A 1}$ for correct values of x.
$0<x<\frac{2}{3}$
Note: Award $\boldsymbol{A 1 A 0}$ for incorrect inequality signs.
2. $\quad \operatorname{det}\left(\begin{array}{ccc}k & 1 & 1 \\ 0 & 2 & k-1 \\ k & 0 & k-2\end{array}\right)=k\left|\begin{array}{cc}2 & k-1 \\ 0 & k-2\end{array}\right|-\left|\begin{array}{cc}0 & k-1 \\ k & k-2\end{array}\right|+\left|\begin{array}{ll}0 & 2 \\ k & 0\end{array}\right|$

$$
=2 k(k-2)+k(k-1)-2 k
$$

Note: Allow expansion about any row or column

$$
\begin{array}{lr}
2 k(k-2)+k(k-1)-2 k=0 & \text { M1 } \\
3 k^{2}-7 k=0 \\
k(3 k-7)=0 \\
k=0 \text { or } k=\frac{7}{3} & \text { A1A1 }
\end{array}
$$

3. $\left(x^{2}-\frac{2}{x}\right)^{4}=\left(x^{2}\right)^{4}+4\left(x^{2}\right)^{3}\left(-\frac{2}{x}\right)+6\left(x^{2}\right)^{2}\left(-\frac{2}{x}\right)^{2}+4\left(x^{2}\right)\left(-\frac{2}{x}\right)^{3}+\left(-\frac{2}{x}\right)^{4}$

$$
=x^{8}-8 x^{5}+24 x^{2}-\frac{32}{x}+\frac{16}{x^{4}}
$$

Note: Deduct one \boldsymbol{A} mark for each incorrect or omitted term.
4.

$$
\begin{align*}
& \mathrm{P}\left(R^{\prime} \cap L\right)=\frac{11}{20} \times \frac{3}{20} \tag{A1}\\
& \mathrm{P}\left(R^{\prime} \mid L\right)=\frac{9}{20} \times \frac{7}{20}+\frac{11}{20} \times \frac{3}{20} \\
& \mathrm{P}(L) \\
& =\frac{33}{96}\left(=\frac{11}{32}\right)
\end{align*}
$$

5. METHOD 1

$5(2 a+9 d)=60($ or $2 a+9 d=12)$	M1A1
$10(2 a+19 d)=320($ or $2 a+19 d=32)$	$\boldsymbol{A 1}$
solve simultaneously to obtain	M1
$a=-3, d=2$	$\boldsymbol{A 1}$
the $15^{\text {th }}$ term is $-3+14 \times 2=25$	$\boldsymbol{A 1}$

Note: $\boldsymbol{F T}$ the final $\boldsymbol{A 1}$ on the values found in the penultimate line.

METHOD 2

with an AP the mean of an even number of consecutive terms equals the mean of the middle terms

$$
\begin{array}{ll}
\frac{a_{10}+a_{11}}{2}=16\left(\text { or } a_{10}+a_{11}=32\right) & \boldsymbol{A 1} \\
\frac{a_{5}+a_{6}}{2}=6\left(\text { or } a_{5}+a_{6}=12\right) & \boldsymbol{A 1} \\
a_{10}-a_{5}+a_{11}-a_{6}=20 & \boldsymbol{M 1} \\
5 d+5 d=20 & \boldsymbol{A 1} \\
d=2 \text { and } a=-3\left(\text { or } a_{5}=5 \text { or } a_{10}=15\right) & \boldsymbol{A 1}
\end{array}
$$

Note: $\boldsymbol{F T}$ the final $\boldsymbol{A 1}$ on the values found in the penultimate line.

6. METHOD 1

(a) $u_{n}=S_{n}-S_{n-1}$

$$
=\frac{7^{n}-a^{n}}{7^{n}}-\frac{7^{n-1}-a^{n-1}}{7^{n-1}}
$$

(b) EITHER

$$
\begin{array}{rlrl}
u_{1} & =1-\frac{a}{7} & A 1 \\
u_{2} & =1-\frac{a^{2}}{7^{2}}-\left(1-\frac{a}{7}\right) & & \text { M1 } \\
& =\frac{a}{7}\left(1-\frac{a}{7}\right) & A 1 \\
\text { common ratio }=\frac{a}{7} & A 1
\end{array}
$$

OR

$$
\begin{array}{rlrl}
u_{n} & =1-\left(\frac{a}{7}\right)^{n}-1+\left(\frac{a}{7}\right)^{n-1} & & \boldsymbol{M 1} \\
& =\left(\frac{a}{7}\right)^{n-1}\left(1-\frac{a}{7}\right) & & \boldsymbol{A 1} \boldsymbol{7} \\
& =\frac{a}{7}\left(\frac{a}{7}\right)^{n-1} & \boldsymbol{A 1 A 1}
\end{array}
$$

(c) (i) $0<a<7($ accept $a<7) \quad$ A1
(ii) 1

A1

Question 6 continued

METHOD 2

(a) $\quad u_{n}=b r^{n-1}=\left(\frac{7-a}{7}\right)\left(\frac{a}{7}\right)^{n-1}$

A1A1
(b) for a GP with first term b and common ratio r
$S_{n}=\frac{b\left(1-r^{n}\right)}{1-r}=\left(\frac{b}{1-r}\right)-\left(\frac{b}{1-r}\right) r^{n}$ M1
as $S_{n}=\frac{7^{n}-a^{n}}{7^{n}}=1-\left(\frac{a}{7}\right)^{n}$
comparing both expressions
$\frac{b}{1-r}=1$ and $r=\frac{a}{7}$
$b=1-\frac{a}{7}=\frac{7-a}{7}$
$u_{1}=b=\frac{7-a}{7}$, common ratio $=r=\frac{a}{7}$
Note: Award method marks if the expressions for b and r are deduced in part (a).
(c) (i) $0<a<7($ accept $a<7) \quad$ A1
(ii) 1 A1
7. (a) $\boldsymbol{a}=\left(\begin{array}{r}4 \\ -2 \\ -1\end{array}\right) \perp$ to the plane $\boldsymbol{e}=\left(\begin{array}{c}-2 \\ 1 \\ k\end{array}\right)$ is parallel to the line \quad (A1)(A1)

Note: Award $\boldsymbol{A I}$ for each correct vector written down, even if not identified.
line \perp plane $\Rightarrow \boldsymbol{e}$ parallel to \boldsymbol{a}

$$
\text { since }\left(\begin{array}{r}
4 \\
-2 \\
-1
\end{array}\right)=t\left(\begin{array}{r}
-2 \\
1 \\
k
\end{array}\right) \Rightarrow k=\frac{1}{2}
$$

(M1)A1
(b) $4(3-2 \lambda)-2 \lambda-\left(-1+\frac{1}{2} \lambda\right)=1$
(M1)(A1)
Note: $\quad \boldsymbol{F} \boldsymbol{T}$ their value of k as far as possible.

$$
\begin{array}{ll}
\lambda=\frac{8}{7} & A 1 \\
\mathrm{P}\left(\frac{5}{7}, \frac{8}{7},-\frac{3}{7}\right) & A 1
\end{array}
$$

8. $\left(1+x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{2} \tan y \Rightarrow \int \frac{\mathrm{~d} y}{\tan y}=\int \frac{2 x^{2}}{1+x^{3}} \mathrm{~d} x$

$$
\int \frac{\cos y}{\sin y} \mathrm{~d} y=\frac{2}{3} \int \frac{3 x^{2}}{1+x^{3}} \mathrm{~d} x
$$

$\ln |\sin y|=\frac{2}{3} \ln \left|1+x^{3}\right|+C$
Notes: Do not penalize omission of modulus signs.
Do not penalize omission of constant at this stage.

EITHER

$$
\ln \left|\sin \frac{\pi}{2}\right|=\frac{2}{3} \ln |1|+C \Rightarrow C=0
$$

OR

$$
\begin{aligned}
& |\sin y|=A\left|1+x^{3}\right|^{\frac{2}{3}}, A=\mathrm{e}^{C} \\
& \left|\sin \frac{\pi}{2}\right|=A\left|1+0^{3}\right|^{\frac{2}{3}} \Rightarrow A=1
\end{aligned}
$$

THEN

$$
y=\arcsin \left(\left(1+x^{3}\right)^{\frac{2}{3}}\right)
$$

Note: Award M0A0 if constant omitted earlier.
9. (a) $\frac{\pi}{4}-\arccos x \geq 0$

$$
\begin{aligned}
& \arccos x \leq \frac{\pi}{4} \\
& x \geq \frac{\sqrt{2}}{2} \quad\left(\text { accept } x \geq \frac{1}{\sqrt{2}}\right) \\
& \text { since }-1 \leq x \leq 1 \\
& \Rightarrow \frac{\sqrt{2}}{2} \leq x \leq 1 \quad\left(\operatorname{accept} \frac{1}{\sqrt{2}} \leq x \leq 1\right)
\end{aligned}
$$

Note: Penalize the use of $<$ instead of \leq only once.
(b) $y=\sqrt{\frac{\pi}{4}-\arccos x} \Rightarrow x=\cos \left(\frac{\pi}{4}-y^{2}\right)$

$$
\begin{aligned}
& f^{-1}: x \rightarrow \cos \left(\frac{\pi}{4}-x^{2}\right) \\
& 0 \leq x \leq \sqrt{\frac{\pi}{4}}
\end{aligned}
$$

10. METHOD 1

$$
\text { (a) } \begin{aligned}
|\boldsymbol{a}-\boldsymbol{b}| & =\sqrt{|\boldsymbol{a}|^{2}+|\boldsymbol{b}|^{2}-2|\boldsymbol{a}||\boldsymbol{b}| \cos \alpha} \\
& =\sqrt{2-2 \cos \alpha} \\
|\boldsymbol{a}+\boldsymbol{b}| & =\sqrt{|\boldsymbol{a}|^{2}+|\boldsymbol{b}|^{2}-2|\boldsymbol{a}||\boldsymbol{b}| \cos (\pi-\alpha)} \\
& =\sqrt{2+2 \cos \alpha}
\end{aligned}
$$

Note: \quad Accept the use of a, b for $|\boldsymbol{a}|,|\boldsymbol{b}|$.
(b) $\sqrt{2+2 \cos \alpha}=3 \sqrt{2-2 \cos \alpha}$ M1

$$
\cos \alpha=\frac{4}{5}
$$

METHOD 2

(a) $|\boldsymbol{a}-\boldsymbol{b}|=2 \sin \frac{\alpha}{2}$

$$
|\boldsymbol{a}+\boldsymbol{b}|=2 \sin \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)=2 \cos \frac{\alpha}{2}
$$

Note: Accept the use of a, b for $|\boldsymbol{a}|,|\boldsymbol{b}|$.
(b) $2 \cos \frac{\alpha}{2}=6 \sin \frac{\alpha}{2}$

$$
\begin{align*}
& \tan \frac{\alpha}{2}=\frac{1}{3} \Rightarrow \cos ^{2} \frac{\alpha}{2}=\frac{9}{10} \\
& \cos \alpha=2 \cos ^{2} \frac{\alpha}{2}-1=\frac{4}{5} \tag{A1}
\end{align*}
$$

M1

SECTION B

11. (a) METHOD 1

$$
\begin{aligned}
& \frac{z+\mathrm{i}}{z+2}=\mathrm{i} \\
& z+\mathrm{i}=\mathrm{i} z+ \\
& (1-\mathrm{i}) z=\mathrm{i} \\
& z=\frac{\mathrm{i}}{1-\mathrm{i}}
\end{aligned}
$$

$$
z+\mathrm{i}=\mathrm{i} z+2 \mathrm{i} \quad \boldsymbol{M 1}
$$

A1

EITHER

$$
\begin{aligned}
& z=\frac{\operatorname{cis}\left(\frac{\pi}{2}\right)}{\sqrt{2} \operatorname{cis}\left(\frac{3 \pi}{4}\right)} \\
& z=\frac{\sqrt{2}}{2} \operatorname{cis}\left(\frac{3 \pi}{4}\right)\left(\text { or } \frac{1}{\sqrt{2}} \operatorname{cis}\left(\frac{3 \pi}{4}\right)\right)
\end{aligned}
$$

OR

$$
\begin{aligned}
& z=\frac{-1+\mathrm{i}}{2} \quad\left(=-\frac{1}{2}+\frac{1}{2} \mathrm{i}\right) \\
& z=\frac{\sqrt{2}}{2} \operatorname{cis}\left(\frac{3 \pi}{4}\right)\left(\text { or } \frac{1}{\sqrt{2}} \operatorname{cis}\left(\frac{3 \pi}{4}\right)\right)
\end{aligned}
$$

METHOD 2

$\mathrm{i}=\frac{x+\mathrm{i}(y+1)}{x+2+\mathrm{i} y}$ M1
$x+\mathrm{i}(y+1)=-y+\mathrm{i}(x+2)$ A1
$x=-y ; x+2=y+1$
A1
solving, $x=-\frac{1}{2} ; y=\frac{1}{2}$
$z=-\frac{1}{2}+\frac{1}{2} \mathrm{i}$
$z=\frac{\sqrt{2}}{2} \operatorname{cis}\left(\frac{3 \pi}{4}\right)\left(\right.$ or $\left.\frac{1}{\sqrt{2}} \operatorname{cis}\left(\frac{3 \pi}{4}\right)\right)$
Note: Award $\boldsymbol{A 1}$ fort the correct modulus and $\boldsymbol{A 1}$ for the correct argument, but the final answer must be in the form $r \operatorname{cis} \theta$. Accept 135° for the argument.

Question 11 continued

(b) substituting $z=x+\mathrm{i} y$ to obtain $w=\frac{x+(y+1) \mathrm{i}}{(x+2)+y \mathrm{i}}$
use of $(x+2)-y$ i to rationalize the denominator

$$
\begin{aligned}
\omega & =\frac{x(x+2)+y(y+1)+\mathrm{i}(-x y+(y+1)(x+2))}{(x+2)^{2}+y^{2}} \\
& =\frac{\left(x^{2}+2 x+y^{2}+y\right)+\mathrm{i}(x+2 y+2)}{(x+2)^{2}+y^{2}}
\end{aligned}
$$

(c) $\operatorname{Re} \omega=\frac{x^{2}+2 x+y^{2}+y}{(x+2)^{2}+y^{2}}=1$
$\Rightarrow x^{2}+2 x+y^{2}+y=x^{2}+4 x+4+y^{2}$
$\Rightarrow y=2 x+4$
which has gradient $m=2$
(d) EITHER

$$
\begin{aligned}
& \arg (z)=\frac{\pi}{4} \Rightarrow x=y(\text { and } x, y>0) \\
& \omega=\frac{2 x^{2}+3 x}{(x+2)^{2}+x^{2}}+\frac{\mathrm{i}(3 x+2)}{(x+2)^{2}+x^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\text { if } \arg (\omega)=\theta \Rightarrow \tan \theta=\frac{3 x+2}{2 x^{2}+3 x} \tag{M1}
\end{equation*}
$$

$\frac{3 x+2}{2 x^{2}+3 x}=1$
OR

$$
\begin{array}{ll}
\arg (z)=\frac{\pi}{4} \Rightarrow x=y(\text { and } x, y>0) & \boldsymbol{A 1} \\
\arg (w)=\frac{\pi}{4} \Rightarrow x^{2}+2 x+y^{2}+y=x+2 y+2 & \text { M1 } \\
\text { solve simultaneously } & \text { M1 } \\
x^{2}+2 x+x^{2}+x=x+2 x+2 \text { (or equivalent) } & \boldsymbol{A 1}
\end{array}
$$

THEN

$$
\begin{aligned}
& x^{2}=1 \\
& x=1(\text { as } x>0)
\end{aligned}
$$

Note: Award $\boldsymbol{A 0}$ for $x= \pm 1$.

$$
|z|=\sqrt{2}
$$

Note: Allow $\boldsymbol{F T}$ from incorrect values of x.
12. (a) (i) the period is 2
(ii) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}=2 \pi \cos (\pi t)+2 \pi \cos (2 \pi t)$
(M1)A1
$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=-2 \pi^{2} \sin (\pi t)-4 \pi^{2} \sin (2 \pi t)$
(M1)A1
(iii) $\quad v=0$
$2 \pi(\cos (\pi t)+\cos (2 \pi t))=0$

EITHER

$$
\begin{array}{lr}
\cos (\pi t)+2 \cos ^{2}(\pi t)-1=0 & \text { M1 } \\
(2 \cos (\pi t)-1)(\cos (\pi t)+1)=0 & \text { (A1) } \\
\cos (\pi t)=\frac{1}{2} \text { or } \cos (\pi t)=-1 & \text { A1 } \\
t=\frac{1}{3}, t=1 & \text { A1 } \\
t=\frac{5}{3}, t=\frac{7}{3}, t=\frac{11}{3}, t=3 & \text { A1 }
\end{array}
$$

OR

$2 \cos \left(\frac{\pi t}{2}\right) \cos \left(\frac{3 \pi t}{2}\right)=0$
M1
$\cos \left(\frac{\pi t}{2}\right)=0$ or $\cos \left(\frac{3 \pi t}{2}\right)=0$
A1A1
$t=\frac{1}{3}, 1$
A1
$t=\frac{5}{3}, \frac{7}{3}, 3, \frac{11}{3}$
A1
[10 marks]
continued ...

Question 12 continued
(b) $\quad P(n): f^{(2 n)}(x)=(-1)^{n}\left(A a^{2 n} \sin (a x)+B b^{2 n} \sin (b x)\right)$

$$
\begin{array}{rlrl}
P(1): f^{\prime \prime}(x) & =(A a \cos (a x)+B b \cos (b x))^{\prime} & & \text { M1 } \\
& =-A a^{2} \sin (a x)-B b^{2} \sin (b x) & \\
& =-1\left(A a^{2} \sin (a x)+B b^{2} \sin (b x)\right) & \text { A1 }
\end{array}
$$

$\therefore P(1)$ true
assume that

$$
P(k): f^{(2 k)}(x)=(-1)^{k}\left(A a^{2 k} \sin (a x)+B b^{2 k} \sin (b x)\right) \text { is true } \quad \text { M1 }
$$

consider $P(k+1)$

$$
\begin{aligned}
f^{(2 k+1)}(x) & =(-1)^{k}\left(A a^{2 k+1} \cos (a x)+B b^{2 k+1} \cos (b x)\right) & \text { M1A1 } \\
f^{(2 k+2)}(x) & =(-1)^{k}\left(-A a^{2 k+2} \sin (a x)-B b^{2 k+2} \sin (b x)\right) & \boldsymbol{A 1} \\
& =(-1)^{k+1}\left(A a^{2 k+2} \sin (a x)+B b^{2 k+2} \sin (b x)\right) & \boldsymbol{A 1}
\end{aligned}
$$

$P(k)$ true implies $P(k+1)$ true, $P(1)$ true so $P(n)$ true $\forall n \in \mathbb{Z}^{+} \quad \boldsymbol{R 1}$
Note: Award the final $\boldsymbol{R} \mathbf{1}$ only if the previous three \boldsymbol{M} marks have been awarded.
13. (a) (i) $x \mathrm{e}^{x}=0 \Rightarrow x=0$

A1 so, they intersect only once at $(0,0)$
(ii) $y^{\prime}=\mathrm{e}^{x}+x \mathrm{e}^{x}=(1+x) \mathrm{e}^{x}$

M1A1
$y^{\prime}(0)=1$
A1
$\theta=\arctan 1=\frac{\pi}{4} \quad\left(\theta=45^{\circ}\right)$
(b) when $k=1, y=x$
$x \mathrm{e}^{x}=x \Rightarrow x\left(\mathrm{e}^{x}-1\right)=0 \quad$ M1
$\Rightarrow x=0$
A1
$y^{\prime}(0)=1$ which equals the gradient of the line $y=x$ R1
so, the line is tangent to the curve at origin
$\boldsymbol{A G}$
Note: Award full credit to candidates who note that the equation $x\left(\mathrm{e}^{x}-1\right)=0$ has a double root $x=0$ so $y=x$ is a tangent.
(c) (i) $x \mathrm{e}^{x}=k x \Rightarrow x\left(\mathrm{e}^{x}-k\right)=0$ M1

$$
\Rightarrow x=0 \text { or } x=\ln k
$$

A1
$k>0$ and $k \neq 1$
A1
(ii) $(0,0)$ and $(\ln k, k \ln k)$
(iii) $\quad A=\left|\int_{0}^{\ln k} k x-x \mathrm{e}^{x} \mathrm{~d} x\right|$

Note: Do not penalize the omission of absolute value.
(iv) attempt at integration by parts to find $\int x \mathrm{e}^{x} \mathrm{~d} x$

$$
\begin{array}{rlrl}
\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}(x-1) & \boldsymbol{A 1} \\
\text { as } 0<k<1 \Rightarrow \ln k<0 & & \boldsymbol{R 1} \\
A & =\int_{\ln k}^{0} k x-x \mathrm{e}^{x} \mathrm{~d} x=\left[\frac{k}{2} x^{2}-(x-1) \mathrm{e}^{x}\right]_{\ln k}^{0} & \boldsymbol{A 1} \\
& =1-\left(\frac{k}{2}(\ln k)^{2}-(\ln k-1) k\right) & \boldsymbol{A 1} \\
& =1-\frac{k}{2}\left((\ln k)^{2}-2 \ln k+2\right) & \\
& =1-\frac{k}{2}\left((\ln k-1)^{2}+1\right) & \boldsymbol{M 1 A 1} \\
\text { since } \frac{k}{2}\left((\ln k-1)^{2}+1\right)>0 & \boldsymbol{R 1} \\
A<1 & \boldsymbol{A G}
\end{array}
$$

