

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 20 May 2010 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

[4 marks]

[6 marks]

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2 -

1. [Maximum mark: 10]

The function $f: \mathbb{R} \to \mathbb{R}$ is defined by

 $f(x) = 2e^x - e^{-x}.$

- (a) Show that f is a bijection.
- (b) Find an expression for $f^{-1}(x)$.
- **2.** [Maximum mark: 10]

The relation *R* is defined for 2×2 matrices such that *ARB* if and only if there exists a non-singular matrix *H* such that *AH* = *HB*.

- (a) Show that *R* is an equivalence relation. [7 marks]
- (b) Given that *A* is singular and *ARB*, show that *B* is also singular. [3 marks]

3. [Maximum mark: 14]

- (a) Consider the set $A = \{1, 3, 5, 7\}$ under the binary operation *, where * denotes multiplication modulo 8.
 - (i) Write down the Cayley table for $\{A, *\}$.
 - (ii) Show that $\{A, *\}$ is a group.
 - (iii) Find all solutions to the equation 3 * x * 7 = y. Give your answers in the form (x, y). [9 marks]

(This question continues on the following page)

(*Question 3 continued*)

- (b) Now consider the set $B = \{1, 3, 5, 7, 9\}$ under the binary operation \otimes , where \otimes denotes multiplication modulo 10. Show that $\{B, \otimes\}$ is not a group. [2 marks]
- (c) Another set C can be formed by removing an element from B so that $\{C, \otimes\}$ is a group.
 - (i) State which element has to be removed.
 - (ii) Determine whether or not $\{A, *\}$ and $\{C, \otimes\}$ are isomorphic. [3 marks]

4. [Maximum mark: 13]

The permutation p_1 of the set $\{1, 2, 3, 4\}$ is defined by

$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}.$$

- (a) (i) State the inverse of p_1 .
 - (ii) Find the order of p_1 . [5 marks]
- (b) Another permutation p_2 is defined by

$$p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}.$$

- (i) Determine whether or not the composition of p_1 and p_2 is commutative.
- (ii) Find the permutation p_3 which satisfies

$$p_1 p_3 p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$
 [8 marks]

5. [Maximum mark: 13]

Let G be a finite cyclic group.

(a)	Prove that G is Abelian.	[4 marks]
(b)	Given that a is a generator of G, show that a^{-1} is also a generator.	[5 marks]
(c)	Show that if the order of G is five, then all elements of G , apart from the identity, are generators of G .	[4 marks]