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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1. [Maximum mark:  10]

 The function f : →  is defined by

f x x x( ) = − −2e e .

 (a) Show that  f  is a bijection. [4 marks]

 (b) Find an expression for f x−1( ) . [6 marks]

2. [Maximum mark:  10]

 The relation  R  is defined for 2 2×  matrices such that  ARB  if and only if there exists a  
non-singular matrix  H  such that AH HB= .

 (a) Show that  R  is an equivalence relation. [7 marks]

 (b) Given that  A  is singular and  ARB , show that  B  is also singular. [3 marks]

3. [Maximum mark:  14]

 (a) Consider the set A = { , , , }1 3 5 7  under the binary operation *, where * denotes 
multiplication modulo 8.

  (i) Write down the Cayley table for { , *}A .

  (ii) Show that { , *}A  is a group.

  (iii) Find all solutions to the equation 3 7* *x y= .  Give your answers in the 
form ( , )x y . [9 marks]

(This question continues on the following page)
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Turn over 

(Question 3 continued)

 (b) Now consider the set B = { , , , , }1 3 5 7 9  under the binary operation ⊗ , where ⊗   
denotes multiplication modulo 10.  Show that { , }B ⊗  is not a group. [2 marks]

 (c) Another set  C  can be formed by removing an element from  B  so that { , }C ⊗  is 
a group.

  (i) State which element has to be removed.

  (ii) Determine whether or not { , *}A  and { , }C ⊗  are isomorphic. [3 marks]

4. [Maximum mark:  13]

 The permutation p1  of the set { , , ,1 2 3 4}  is defined by

p1

1 2 3 4
2 4 1 3

=








 .

 (a) (i) State the inverse of p1 .

  (ii) Find the order of p1 . [5 marks]

 (b) Another permutation p2  is defined by

p2

1 2 3 4
3 2 4 1

=








 .

  (i) Determine whether or not the composition of p p1 2and  is commutative.

  (ii) Find the permutation p3  which satisfies

p p p1 3 2

1 2 3 4
1 2 3 4

=








 . [8 marks]
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5. [Maximum mark:  13]

 Let  G  be a finite cyclic group.

 (a) Prove that  G  is Abelian. [4 marks]

 (b) Given that  a  is a generator of  G , show that a−1  is also a generator. [5 marks]

 (c) Show that if the order of  G  is five, then all elements of  G , apart from the identity, 
are generators of  G . [4 marks]


