88097209

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SETS, RELATIONS AND GROUPS
Wednesday 18 November 2009 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

The binary operation $*$ is defined on the set $S=\{0,1,2,3\}$ by

$$
a * b=a+2 b+a b(\bmod 4) .
$$

(a) (i) Construct the Cayley table.
(ii) Write down, with a reason, whether or not your table is a Latin square.
(b) (i) Write down, with a reason, whether or not $*$ is commutative.
(ii) Determine whether or not * is associative, justifying your answer.
(c) Find all solutions to the equation $x * 1=2 * x$, for $x \in S$.
2. [Maximum mark: 10]

The function $f:\left[0, \infty\left[\rightarrow\left[0, \infty\left[\right.\right.\right.\right.$ is defined by $f(x)=2 \mathrm{e}^{x}+\mathrm{e}^{-x}-3$.
(a) Find $f^{\prime}(x)$. [1 mark]
(b) Show that f is a bijection. [3 marks]
(c) Find an expression for $f^{-1}(x)$. [6 marks]
3. [Maximum mark: 12]

The relations R and S are defined on quadratic polynomials P of the form

$$
P(z)=z^{2}+a z+b, \text { where } a, b \in \mathbb{R}, z \in \mathbb{C} .
$$

(a) The relation R is defined by $P_{1} R P_{2}$ if and only if the sum of the two zeros of P_{1} is equal to the sum of the two zeros of P_{2}.
(i) Show that R is an equivalence relation.
(ii) Determine the equivalence class containing $z^{2}-4 z+5$.
(b) The relation S is defined by $P_{1} S P_{2}$ if and only if P_{1} and P_{2} have at least one zero in common. Determine whether or not S is transitive.
4. [Maximum mark: 16]
(a) Show that the set of matrices of the form

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \text {, where } a, b \in \mathbb{R}^{+}
$$

is a group G under matrix multiplication.
(You may assume that matrix multiplication is associative.)
(b) Given that the set of matrices of the form

$$
\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & a b
\end{array}\right) \text {, where } a, b \in \mathbb{R}^{+}
$$

is a group H under matrix multiplication, show that G and H are isomorphic.
[9 marks]
5. [Maximum mark: 9]

Let $\{G, *\}$ be a finite group of order n and let H be a non-empty subset of G.
(a) Show that any element $h \in H$ has order smaller than or equal to n.
(b) If H is closed under $*$, show that $\{H, *\}$ is a subgroup of $\{G, *\}$.

