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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  13]

 The binary operation *  is defined on the set S = { , , , }0 1 2 3  by 

a b a b ab* (mod )= + +2 4 .

 (a) (i) Construct the Cayley table.

  (ii) Write down, with a reason, whether or not your table is a Latin square. [4 marks]

 (b) (i) Write down, with a reason, whether or not * is commutative.

  (ii) Determine whether or not * is associative, justifying your answer. [5 marks]

 (c) Find all solutions to the equation x x* *1 2= , for x S∈ . [4 marks]

2.	 [Maximum mark:  10]

 The function f :[ , [ [ , [0 0∞ → ∞  is defined by f x x x( ) = + −−2 3e e .

 (a) Find ′f x( ) . [1 mark]

 (b) Show that  f  is a bijection. [3 marks]

 (c) Find an expression for f x−1( ) . [6 marks]
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3.	 [Maximum mark:  12]

 The relations  R  and  S  are defined on quadratic polynomials  P  of the form 

P z z az b( ) = + +2 , where a b z, ,∈ ∈  .

 (a) The relation  R  is defined by PRP1 2  if and only if the sum of the two zeros of P1  
is equal to the sum of the two zeros of P2 .

  (i) Show that  R  is an equivalence relation.

  (ii) Determine the equivalence class containing z z2 4 5− + . [9 marks]

 (b) The relation  S  is defined by PSP1 2  if and only if P P1 2and  have at least one zero 
in common.  Determine whether or not  S  is transitive. [3 marks]

4.	 [Maximum mark:  16]

 (a) Show that the set of matrices of the form

a
b
0

0








 , where a b, ∈ +

  

  is a group  G  under matrix multiplication.
  (You may assume that matrix multiplication is associative.) [7 marks]

 (b) Given that the set of matrices of the form 

a
b

ab

0 0
0 0
0 0

















, where a b, ∈ +


  is a group  H  under matrix multiplication, show that  G  and  H  are isomorphic. [9 marks]

5.	 [Maximum mark:  9]

 Let { , *}G  be a finite group of order  n  and let  H  be a non-empty subset of  G . 

 (a) Show that any element h H∈  has order smaller than or equal to  n . [3 marks]

 (b) If  H  is closed under *, show that { , *}H  is a subgroup of { , *}G . [6 marks]


