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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  13]

 Solve the differential equation

 d
d
y
x

y
x

y
x

= +
2

2  (where x > 0 ) 

 given that y = 2  when x =1.  Give your answer in the form y f x= ( ) .

2.	 [Maximum mark:  10]

 The function  f  is defined by f x
x

( ) ( )= −e e 1 .

 (a) Assuming the Maclaurin series for ex , show that the Maclaurin series for f x( )  

is 1 5
6

2 3+ + + +x x x ...  . [5 marks]

 (b) Hence or otherwise find the value of lim ( )
( )x

f x
f x→

−
′ −0

1
1

. [5 marks]

3.	 [Maximum mark:  9]

 The sequence { }un  is defined for n∈ +
  by u n

nn =
+

2
1

2

2 .

 (a) Find the value  L  of lim
n nu

→∞
. [2 marks]

 (b) Use the formal ε ,  N  definition of convergence to prove that lim
n nu L

→∞
= . [7 marks]
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4.	 [Maximum mark:  13]

 Consider the infinite series 
1

31 n nn ( )+=

∞

∑ .

 (a) Using one of the standard tests for convergence, show that the series is convergent. [3 marks]

 (b) (i) Express 
1

3n n( )+  in partial fractions.

  (ii) Hence find the sum of the above infinite series. [10 marks]

5.	 [Maximum mark:  15]

 (a) Find the radius of convergence of the infinite series

1
2

1 3
2 5

1 3 5
2 5 8

1 3 5 7
2 5 8 11

2 3 4x x x x+ ×
×

+ × ×
× ×

+ × × ×
× × ×

+ ...  . [7 marks]

 (b) Determine whether the series sin 1
1 n

n
n

+



=

∞

∑ π  is convergent or divergent. [8 marks]


