

International Baccalaureate Baccalauréat International Bachillerato Internacional

MATHEMATICS

HIGHER LEVEL
PAPER 3 - SERIES AND DIFFERENTIAL EQUATIONS
Wednesday 18 November 2009 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

Solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x}+\frac{y^{2}}{x^{2}}(\text { where } x>0)
$$

given that $y=2$ when $x=1$. Give your answer in the form $y=f(x)$.
2. [Maximum mark: 10]

The function f is defined by $f(x)=\mathrm{e}^{\left(\mathrm{e}^{x}-1\right)}$.
(a) Assuming the Maclaurin series for e^{x}, show that the Maclaurin series for $f(x)$ is $1+x+x^{2}+\frac{5}{6} x^{3}+\ldots$.
(b) Hence or otherwise find the value of $\lim _{x \rightarrow 0} \frac{f(x)-1}{f^{\prime}(x)-1}$.
3. [Maximum mark: 9]

The sequence $\left\{u_{n}\right\}$ is defined for $n \in \mathbb{Z}^{+}$by $u_{n}=\frac{2 n^{2}}{n^{2}+1}$.
(a) Find the value L of $\lim _{n \rightarrow \infty} u_{n}$.
(b) Use the formal ε, N definition of convergence to prove that $\lim _{n \rightarrow \infty} u_{n}=L$.
4. [Maximum mark: 13]

Consider the infinite series $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$.
(a) Using one of the standard tests for convergence, show that the series is convergent.
(b) (i) Express $\frac{1}{n(n+3)}$ in partial fractions.
(ii) Hence find the sum of the above infinite series.
5. [Maximum mark: 15]
(a) Find the radius of convergence of the infinite series

$$
\frac{1}{2} x+\frac{1 \times 3}{2 \times 5} x^{2}+\frac{1 \times 3 \times 5}{2 \times 5 \times 8} x^{3}+\frac{1 \times 3 \times 5 \times 7}{2 \times 5 \times 8 \times 11} x^{4}+\ldots .
$$

(b) Determine whether the series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}+n \pi\right)$ is convergent or divergent.

