

MARKSCHEME

May 2009

MATHEMATICS

Higher Level

Paper 2

Samples to Team Leaders	8 June 2009
Everything (marks, scripts etc.) to IB Cardiff	16 June 2009

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- A Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an **Answer** or for **Accuracy**; may be implied by **correct** subsequent working.
- **R** Marks awarded for clear **Reasoning**.
- N Marks awarded for **correct** answers if **no** working shown.
- **AG** Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the **breakdown** of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where M and A marks are noted on the same line, e.g. MIAI, this usually means MI for an **attempt** to use an appropriate method (e.g. substitution into a formula) and AI for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do **not** split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write -1(MR) next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the MR, then use discretion to award fewer
- If the MR leads to an inappropriate value (e.g. $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER...OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x - 3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 = (-10\cos(5x-3))$$

Award AI for $(2\cos(5x-3))$ 5, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Candidates should be penalized **once only IN THE PAPER** for an accuracy error (AP). Award the marks as usual then write (AP) against the answer. On the **front** cover write -1(AP). Deduct 1 mark from the total for the paper, not the question.

- If a final correct answer is incorrectly rounded, apply the AP.
- If the level of accuracy is not specified in the question, apply the **AP** for correct answers not given to three significant figures.

If there is no working shown, and answers are given to the correct two significant figures, apply the **AP**. However, do not accept answers to one significant figure without working.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) $H \sim N(166.5, 5^2)$ $P(H \ge 170) = 0.242...$ (M1)(A1) $0.242... \times 63 = 15.2$ A1 so, approximately 15 students

(b) correct mean: 161.5 (cm) A1 variance remains the same, i.e. 25 (cm²) A2

[6 marks]

2. (a) $i^4 - 5i^3 + 7i^2 - 5i + 6 = 1 + 5i - 7 - 5i + 6$ = 0 *M1A1* = 0 *AG N0*

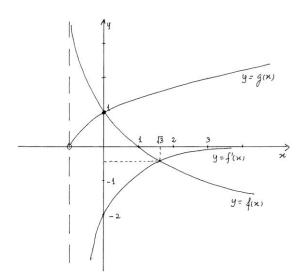
(b) i root \Rightarrow -i is second root moreover, $x^4 - 5x^3 + 7x^2 - 5x + 6 = (x - i)(x + i)q(x)$ where $q(x) = x^2 - 5x + 6$ finding roots of q(x)the other two roots are 2 and 3

(M1)A1

Note: Final *A1A1* is independent of previous work.

[6 marks]

3.



$$f'(x) = \frac{-2}{(1+x)^2}$$
 M1A1

Note: Alternatively, award *M1A1* for correct sketch of the derivative.

find at least one point of intersection of graphs
$$(MI)$$

$$y = f(x)$$
 and $y = f'(x)$ for $x = \sqrt{3}$ or 1.73 (A1)

$$y = f(x)$$
 and $y = g(x)$ for $x = 0$ (A1)

forming inequality
$$0 \le x \le \sqrt{3}$$
 (or $0 \le x \le 1.73$)

A1A1 N4

Note: Award AI for correct limits and AI for correct inequalities.

[7 marks]

4. (a)
$$X \sim Po(0.6)$$

$$P(X \ge 1) = 1 - P(X = 0)$$

= 0.451

(b)
$$Y \sim \text{Po}(2.4)$$
 (M1)
 $P(Y = 3) = 0.209$

(c)
$$Z \sim Po(0.6n)$$
 (M1)
 $P(Z \ge 3) = 1 - P(Z \le 2) > 0.8$ (M1)

Note: Only one of these *M1* marks may be implied.

 $n \ge 7.132...$ (hours)

so, Mr Lee needs to fish for at least 8 complete hours

A1

Note: Accept a shown trial and error method that leads to a correct solution.

[7 marks]

N2

5. consider a vector parallel to each line,

e.g.
$$\mathbf{u} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix}$ AIAI

let θ be the angle between the lines

$$\cos \theta = \frac{|\mathbf{u} \cdot \mathbf{v}|}{|\mathbf{u}||\mathbf{v}|} = \frac{|12 - 6 + 1|}{\sqrt{21}\sqrt{19}}$$

$$= \frac{7}{\sqrt{21}\sqrt{19}} = 0.350...$$
(A1)
$$\cos \theta = 69.5^{\circ} \left(\text{or } 1.21 \text{ rad or } \arccos\left(\frac{7}{\sqrt{21}\sqrt{19}}\right) \right)$$
A1 N4

Note: Allow *FT* from incorrect reasonable vectors.

[6 marks]

6. (a)
$$\int \frac{\sin \theta}{1 - \cos \theta} d\theta = \int \frac{(1 - \cos \theta)'}{1 - \cos \theta} d\theta = \ln(1 - \cos \theta) + C$$
 (M1)A1A1

Note: Award AI for $\ln(1-\cos\theta)$ and AI for C.

(b)
$$\int_{\frac{\pi}{2}}^{a} \frac{\sin \theta}{1 - \cos \theta} d\theta = \frac{1}{2} \Rightarrow \left[\ln (1 - \cos \theta) \right]_{\frac{\pi}{2}}^{a} = \frac{1}{2}$$

$$1 - \cos a = e^{\frac{1}{2}} \Rightarrow a = \arccos(1 - \sqrt{e}) \text{ or } 2.28$$

$$A1 \qquad N2$$

$$[5 \text{ marks}]$$

7. (a) let
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 3 \\ 5 & -1 & 4 \end{pmatrix}$$
, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $B = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix}$ (M1)

point of intersection is $\left(\frac{11}{12}, \frac{7}{12}, \frac{1}{4}\right)$ (or (0.917, 0.583, 0.25)) **A1**

(b) METHOD 1

(i)
$$\det \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 3 \\ 5 & -1 & a \end{pmatrix} = 0$$
 M1

$$-3a + 24 = 0$$
 (A1)
 $a = 8$ A1 N1

(ii) consider the augmented matrix
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & -1 & 3 & 2 \\ 5 & -1 & 8 & 5 \end{pmatrix}$$
 M1

use row reduction to obtain
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & -3 & -1 & -2 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 & 0 & \frac{5}{3} & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

METHOD 2

$$e.g. \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & -1 & 3 & 2 \\ 5 & -1 & a & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & -3 & -1 & -2 \\ 0 & -6 & a - 10 & -5 \end{pmatrix}$$

$$AIAI$$

Note: Award an *A1* for each correctly reduced row.

(i)
$$a-10=-2 \Rightarrow a=8$$
 M1A1 N1

(ii) when
$$a = 8$$
, row $3 \neq 2 \times \text{row } 2$

R1 N0

[8 marks]

8. (a) rearrange
$$\frac{\cos^2 x}{e^y} - e^{e^y} \frac{dy}{dx} = 0$$
 to obtain $\cos^2 x dx = e^y e^{e^y} dy$ (M1)

as
$$\int \cos^2 x \, dx = \int \frac{1 + \cos(2x)}{2} \, dx = \frac{1}{2}x + \frac{1}{4}\sin(2x) + C_1$$
 MIA1

and
$$\int e^{y} e^{e^{y}} dy = e^{e^{y}} + C_2$$

Note: The above two integrations are independent and should not be penalized for missing *C*s.

a general solution of
$$\frac{\cos^2 x}{e^y} - e^{e^y} \frac{dy}{dx} = 0$$
 is $\frac{1}{2}x + \frac{1}{4}\sin(2x) - e^{e^y} = C$

given that
$$y = 0$$
 when $x = \pi$, $C = \frac{\pi}{2} + \frac{1}{4}\sin(2\pi) - e^{e^0} = \frac{\pi}{2} - e$ (or -1.15) (M1)

so, the required solution is defined by the equation

$$\frac{1}{2}x + \frac{1}{4}\sin(2x) - e^{e^y} = \frac{\pi}{2} - e \text{ or } y = \ln\left(\ln\left(\frac{1}{2}x + \frac{1}{4}\sin(2x) + e^{-\frac{\pi}{2}}\right)\right)$$
(or equivalent)

A1 NO

(b) for
$$x = \frac{\pi}{2}$$
, $y = \ln\left(\ln\left(e - \frac{\pi}{4}\right)\right)$ (or -0.417)

[8 marks]

9. (a)
$$\frac{dm}{dt} = \frac{dm}{dy} \frac{dy}{dt}$$

$$\left(= \sec^2 \left(\arcsin \frac{y}{r} \right) \times \left(\arcsin \frac{y}{r} \right)' \times \frac{r}{1000} \right)$$

$$= \frac{1}{\cos^2\left(\arcsin\frac{y}{r}\right)} \times \frac{\frac{1}{r}}{\sqrt{1 - \left(\frac{y}{r}\right)^2}} \times \frac{r}{1000} \quad \text{(or equivalent)}$$
 A1A1A1

$$=\frac{\frac{1}{\sqrt{r^2-y^2}}}{\frac{r^2-y^2}{r^2}}\frac{r}{1000}$$
(A1)

$$= \frac{r^3}{10^3 \sqrt{(r^2 - y^2)^3}} \qquad \text{(or equivalent)}$$
 AI

$$= \left(\frac{r}{10\sqrt{r^2 - y^2}}\right)^3 \qquad AG \qquad NO$$

(b)
$$\frac{dm}{dt}$$
 represents the rate of change of the gradient of the line OP A1

[7 marks]

SECTION B

10. (a) (i)
$$X = B - A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$A1$$

$$Y = B^{-1} - A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

$$A1$$

(ii)
$$X^{-1} + Y^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
 (A1)

$$(0^{-1} - 0^{-1})$$

 $X^{-1} + Y^{-1}$ has no inverse A1
as $det(X^{-1} + Y^{-1}) = 0$ R1

[5 marks]

(b) if
$$P(n)$$
: $A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$

for
$$n=1$$
, $P(1): A = \begin{pmatrix} 1 & 1 & \frac{1(1+1)}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow P(1)$ is true $A1$

assume
$$P(k)$$
 is true *i.e.* $A^{k} = \begin{pmatrix} 1 & k & \frac{k(k+1)}{2} \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}$ $M1$

for n = k + 1,

$$A^{k+1} = A^k A \text{ or } AA^k$$

$$= \begin{pmatrix} 1 & k & \frac{k(k+1)}{2} \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & k & k(k+1) \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 1 & \int 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1+k & 1+k+\frac{k(k+1)}{2} \\ 0 & 1 & 1+k \\ 0 & 0 & 1 \end{pmatrix}$$
M1A1

continued ...

Question 10 continued

$$= \begin{pmatrix} 1 & 1+k & \frac{(k+1)(k+2)}{2} \\ 0 & 1 & 1+k \\ 0 & 0 & 1 \end{pmatrix}$$
 AI

hence $P(k) \Rightarrow P(k+1)$ and P(1) is true, so P(n) is true for all $n \in \mathbb{Z}^+$ **R1 N0** [7 marks]

(c) (i)
$$A^{n}(A^{n})^{-1} = I \Rightarrow \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & x & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $M1$

$$\Rightarrow \begin{pmatrix} 1 & x+n & y+nx+\frac{n(n+1)}{2} \\ 0 & 1 & x+n \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A1$$

solve simultaneous equations to obtain

$$x + n = 0$$
 and $y + nx + \frac{n(n+1)}{2} = 0$
 $x = -n$ and $y = \frac{n(n-1)}{2}$
 AIA1 N2

(ii)
$$A^{n} + (A^{n})^{-1} = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & -n & \frac{n(n-1)}{2} \\ 0 & 1 & -n \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & n^{2} \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 AI

[6 marks]

Total [18 marks]

11. (a)
$$\overrightarrow{OP} = i + 2j - k$$
 (M1)
the coordinates of P are $(1, 2, -1)$ A1

(b) **EITHER**

$$x = 1 + t, y = 2 - 2t, z = 3t - 1$$
 $x - 1 = t, \frac{y - 2}{-2} = t, \frac{z + 1}{3} = t$
 $x - 1 = \frac{y - 2}{-2} = \frac{z + 1}{3}$
AG
NO

OR

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

$$x - 1 = \frac{y - 2}{-2} = \frac{z + 1}{3}$$

$$AG$$

[2 marks]

(c) (i)
$$2(1+t)+(2-2t)+(3t-1)=6 \Rightarrow t=1$$
 M1A1 N1
(ii) coordinates are $(2,0,2)$ *A1*

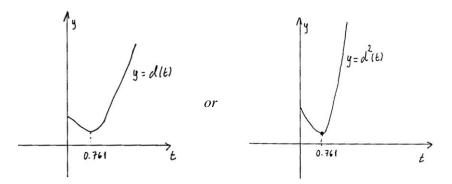
Note: Award A0 for position vector.

(iii) distance travelled is the distance between the two points
$$\sqrt{(2-1)^2 + (0-2)^2 + (2+1)^2} = \sqrt{14} \quad (=3.74)$$
(M1)A1
[6 marks]

continued ...

Question 11 continued

(d) (i) distance from Q to the origin is given by $d(t) = \sqrt{t^4 + (1-t)^2 + (1-t^2)^2} \quad \text{(or equivalent)} \qquad \qquad MIA1$ e.g. for labelled sketch of graph of d or d^2 (M1)(A1)



the minimum value is obtained for t = 0.761

A1 N3

(ii) the coordinates are (0.579, 0.239, 0.421)

A1

Note: Accept answers given as a position vector.

[6 marks]

(e) (i)
$$\boldsymbol{a} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ and } \boldsymbol{c} = \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix}$$
 (M1)A1

substituting in the equation a - b = k(b - c), we have

(M1)

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \\ -3 \end{pmatrix} \right) \Leftrightarrow \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = k \begin{pmatrix} -3 \\ 1 \\ 3 \end{pmatrix}$$

 $\Rightarrow k = 1$ and $k = \frac{1}{3}$ which is impossible

so there is no solution for k

R1

A1

(ii)
$$\overrightarrow{BA}$$
 and \overrightarrow{CB} are not parallel (hence A, B, and C cannot be collinear)

R2

Note: Only accept answers that follow from part (i).

[7 marks]

Total [23 marks]

12. (a) **METHOD 1**

using GDC
$$a=1, b=5, c=3$$
 A1A2A1

METHOD 2

$$x = x + 2\cos x \Rightarrow \cos x = 0$$

$$\Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}...$$

$$a = 1, c = 3$$

$$1 - 2\sin x = 0$$

$$\Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$$

$$b = 5$$

$$A1$$

Note: Final *M1A1* is independent of previous work.

[4 marks]

(b)
$$f\left(\frac{5\pi}{6}\right) = \frac{5\pi}{6} - \sqrt{3}$$
 (or 0.886) (M1)
 $f(2\pi) = 2\pi + 2$ (or 8.28) (M1)
the range is $\left[\frac{5\pi}{6} - \sqrt{3}, 2\pi + 2\right]$ (or [0.886, 8.28]) A1

(c)
$$f'(x) = 1 - 2\sin x$$
 (M1)

$$f'\left(\frac{3\pi}{2}\right) = 3$$

gradient of normal
$$=-\frac{1}{3}$$
 (M1)

equation of the normal is
$$y - \frac{3\pi}{2} = -\frac{1}{3} \left(x - \frac{3\pi}{2} \right)$$
 (M1)

$$y = -\frac{1}{3}x + 2\pi$$
 (or equivalent decimal values) A1 N4
[5 marks]

continued ...

(d) (i)
$$V = \pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left(x^2 - (x + 2\cos x)^2 \right) dx \text{ (or equivalent)}$$
 AIAI

Note: Award AI for limits and AI for π and integrand.

(ii)
$$V = \pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left(x^2 - (x + 2\cos x)^2 \right) dx$$
$$= -\pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} (4x\cos x + 4\cos^2 x) dx$$

using integration by parts
$$M1$$
 and the identity $4\cos^2 x = 2\cos 2x + 2$, $M1$
$$V = -\pi \left[(4x\sin x + 4\cos x) + (\sin 2x + 2x) \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}$$
 $A1A1$

Note: Award A1 for $4x\sin x + 4\cos x$ and A1 for $\sin 2x + 2x$.

$$= -\pi \left[\left(6\pi \sin \frac{3\pi}{2} + 4\cos \frac{3\pi}{2} + \sin 3\pi + 3\pi \right) - \left(2\pi \sin \frac{\pi}{2} + 4\cos \frac{\pi}{2} + \sin \pi + \pi \right) \right] AI$$

$$= -\pi \left(-6\pi + 3\pi - 2\pi - \pi \right)$$

$$= 6\pi^{2}$$

$$AG$$

Note: Do not accept numerical answers.

[7 marks]

N0

Total [19 marks]