

MATHEMATICS HIGHER LEVEL PAPER 3 – SETS, RELATIONS AND GROUPS

Thursday 14 May 2009 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 17]

- (a) Show that $\{1, -1, i, -i\}$ forms a group of complex numbers G under multiplication. [4 marks]
- (b) Consider $S = \{e, a, b, a * b\}$ under an associative operation * where e is the identity element. If a * a = b * b = e and a * b = b * a, show that
 - (i) a * b * a = b,
 - (ii) a * b * a * b = e. [2 marks]
- (c) (i) Write down the Cayley table for $H = \{S, *\}$.
 - (ii) Show that *H* is a group.
 - (iii) Show that *H* is an Abelian group. [6 marks]
- (d) For the above groups, G and H, show that one is cyclic and write down why the other is not. Write down all the generators of the cyclic group. [4 marks]
- (e) Give a reason why G and H are not isomorphic. [1 mark]

[6 marks]

2. [Maximum mark: 11]

The binary operation * is defined on \mathbb{R} as follows. For any elements $a, b \in \mathbb{R}$

a * b = a + b + 1.

- (a) (i) Show that * is commutative.
 - (ii) Find the identity element.
 - (iii) Find the inverse of the element *a*. [5 marks]
- (b) The binary operation is defined on R as follows. For any elements a, b∈ R
 a•b=3ab. The set S is the set of all ordered pairs (x, y) of real numbers and the binary operation ⊙ is defined on the set S as

$$(x_1, y_1) \odot (x_2, y_2) = (x_1 * x_2, y_1 \cdot y_2).$$

Determine whether or not \odot is associative.

3. [Maximum mark: 14]

The relation R is defined on $\mathbb{Z} \times \mathbb{Z}$ such that (a, b)R(c, d) if and only if a-c is divisible by 3 and b-d is divisible by 2.

(a)	Prove that R is an equivalence relation.	[7 marks]
(b)	Find the equivalence class for $(2, 1)$.	[2 marks]
(c)	Write down the five remaining equivalence classes.	[5 marks]

4. [Maximum mark: 11]

- (a) Show that $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by f(x, y) = (2x + y, x y) is a bijection. [10 marks]
- (b) Find the inverse of f. [1 mark]

5. [Maximum mark: 7]

Prove that set difference is not associative.