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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  17]

 (a) Show that { , , , }1 1− −i i  forms a group of complex numbers G under 
multiplication. [4 marks]

(b) Consider S e a b a b= { , , , * } under an associative operation * where  e  is the 
identity element.  If a a b b e* *= =  and a b b a* *= , show that

  (i) a b a b* * = ,

  (ii) a b a b e* * * = . [2 marks]

 (c) (i) Write down the Cayley table for H S= { , *}.

  (ii) Show that  H  is a group.

  (iii) Show that  H  is an Abelian group. [6 marks]

 (d) For the above groups,  G  and  H , show that one is cyclic and write down why the 
other is not.  Write down all the generators of the cyclic group. [4 marks]

 (e) Give a reason why  G  and  H  are not isomorphic. [1 mark]
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2.	 [Maximum mark:  11]

 The binary operation *  is defined on   as follows.  For any elements a b, ∈

 a b a b* = + +1.  

 (a) (i) Show that * is commutative.

  (ii) Find the identity element.

  (iii) Find the inverse of the element  a . [5 marks]

 (b) The binary operation   is defined on   as follows.  For any elements a b, ∈  
a b ab = 3 .  The set  S  is the set of all ordered pairs ( , )x y  of real numbers and 
the binary operation   is defined on the set  S  as

( , ) ( , ) ( * , )x y x y x x y y1 1 2 2 1 2 1 2
= . 

  Determine whether or not   is associative. [6 marks]

3.	 [Maximum mark:  14]

 The relation  R  is defined on  ×  such that ( , ) ( , )a b R c d  if and only if a c−  is 
divisible by 3 and b d−  is divisible by 2. 

 (a) Prove that  R  is an equivalence relation. [7 marks]

 (b) Find the equivalence class for ( , )2 1 . [2 marks]

 (c) Write down the five remaining equivalence classes. [5 marks]
 

 
4.	 [Maximum mark:  11]

 (a) Show that f :   × → ×  defined by f x y x y x y( , ) ( , )= + −2  is a bijection. [10 marks]

 (b) Find the inverse of  f . [1 mark]

5.	 [Maximum mark:  7]

  Prove that set difference is not associative. 


