

MATHEMATICS HIGHER LEVEL PAPER 2

2 hours

0 0		C	andi	aate	sessi	on n	umb	er	
	0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

In a	class of 20 students, 12 study Biology, 15 study History and 2 students study neither	
Biol	ogy nor History.	
(a)	Illustrate this information on a Venn diagram.	[2 marks]
(b)	Find the probability that a randomly selected student from this class is studying both Biology and History.	[1 mark]
(c)	Given that a randomly selected student studies Biology, find the probability that this student also studies History.	[1 mark]

2.	[Maximum	mark:	51
	1 - 1 - 000 0 0 0 0 0 0		- 1

Given that $\mathbf{a} = 2\sin\theta \mathbf{i} + (1-\sin\theta) \mathbf{j}$, find the value of the perpendicular to the line $x + y = 1$.	ne acute angle θ , so that \boldsymbol{a} is

(a)	Differentiate $f(x) = \arcsin x + 2\sqrt{1 - x^2}$, $x \in [-1, 1]$.	[3 marks]
(30)		L

(b) Find the coordinates of the point on the graph of y = f(x) in [-1, 1], where the gradient of the tangent to the curve is zero. [3 marks]

.....

.....

4.	[Maximum	mark:	61

(a)	The graph of $y = \ln(x)$ is transformed into the graph of $y = \ln(2x+1)$. Describe two transformations that are required to do this.	[2 marks]
(b)	Solve $\ln(2x+1) > 3\cos(x), x \in [0, 10].$	[4 marks]

5. HMAXIIII III III III K. J	5.	[Maximum	mark:	.5
-------------------------------------	----	----------	-------	----

An influenza virus is spreading through a city. A vaccination is available to protect against the virus. If a person has had the vaccination, the probability of catching the virus is 0.1; without the vaccination, the probability is 0.3. The probability of a randomly selected person catching the virus is 0.22.

(a)	Find the percentage of the population that has been vaccinated.	[3 marks
(b)	A randomly chosen person catches the virus. Find the probability that this person has been vaccinated.	[2 marks

6.	[Maximum	mark:	61

The acceleration in m s^{-2} of a particle moving in a straight line at time t seconds, $t \ge 0$, is given by the formula $a = -\frac{1}{2}v$. When t = 0, the velocity is 40 m s^{-1} .

Find an expression for v in terms of t.

.....

7. [Maximum mark: 8]

The cubic curve $y = 8x^3 + bx^2 + cx + d$ has two distinct points P and Q, where the gradient is zero.

(a) Show that $b^2 > 24c$.

[4 marks]

(b) Given that the coordinates of P and Q are $\left(\frac{1}{2}, -12\right)$ and $\left(-\frac{3}{2}, 20\right)$ respectively, find the values of b, c and d.

[4 marks]

.....

8. [Maximum mark: .	8.	mark: 51
----------------------------	----	----------

Six people are to sit at a circular table. Two of the people are not to sit immediately beside each other. Find the number of ways that the six people can be seated.							

9. [Maximum mark: 8]

Using the substitution $x = 2\sin\theta$, show that

$$\int \sqrt{4-x^2} \, dx = Ax\sqrt{4-x^2} + B \arcsin\left(\frac{x}{2}\right) + \text{constant},$$

where A and B are constants whose values you are required to find.

 	 	• • • • • • • • • • • • • • • • • • • •

10. *[Maximum mark: 7]*

A helicopter H is moving vertically upwards with a speed of 10 m s^{-1} . The helicopter is h m directly above the point Q which is situated on level ground. The helicopter is observed from the point P which is also at ground level and PQ = 40 m. This information is represented in the diagram below.

When h = 30,

(a)	(a) show that the rate of change of HPQ is 0.16 radians per second;			
(b)	b) find the rate of change of PH.			

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

11. [Maximum mark: 20]

Testing has shown that the volume of drink in a bottle of mineral water filled by **Machine A** at a bottling plant is normally distributed with a mean of 998 ml and a standard deviation of 2.5 ml.

(a) Show that the probability that a randomly selected bottle filled by Machine A contains more than 1000 ml of mineral water is 0.212.

[1 mark]

(b) A random sample of 5 bottles is taken from Machine A. Find the probability that exactly 3 of them each contain more than 1000 ml of mineral water.

[3 marks]

(c) Find the minimum number of bottles that would need to be sampled to ensure that the probability of getting at least one bottle filled by Machine A containing more than 1000 ml of mineral water, is greater than 0.99.

[4 marks]

(d) It has been found that for **Machine B** the probability of a bottle containing less than 996 ml of mineral water is 0.1151. The probability of a bottle containing more than 1000 ml is 0.3446. Find the mean and standard deviation for the volume of mineral water contained in bottles filled by Machine B.

[6 marks]

- (e) The company that makes the mineral water receives, on average, m phone calls every 10 minutes. The number of phone calls, X, follows a Poisson distribution such that P(X = 2) = P(X = 3) + P(X = 4).
 - (i) Find the value of m.
 - (ii) Find the probability that the company receives more than two telephone calls in a randomly selected 10 minute period.

[6 marks]

Two non-intersecting circles C_1 , containing points M and S, and C_2 , containing points N and R, have centres P and Q where PQ = 50. The line segments [MN] and [SR] are common tangents to the circles. The size of the reflex angle MPS is α , the size of the obtuse angle NQR is β , and the size of the angle MPQ is θ . The arc length MS is l_1 and the arc length NR is l_2 . This information is represented in the diagram below.

-13-

The radius of C_1 is x, where $x \ge 10$ and the radius of C_2 is 10.

(a) Explain why x < 40.

[1 mark]

(b) Show that $\cos \theta = \frac{x-10}{50}$.

[2 marks]

- (c) (i) Find an expression for MN in terms of x.
 - (ii) Find the value of x that maximises MN.

[2 marks]

- (d) Find an expression in terms of x for
 - (i) α ;

(ii) β .

[4 marks]

- (e) The length of the perimeter is given by $l_1 + l_2 + MN + SR$.
 - (i) Find an expression, b(x), for the length of the perimeter in terms of x.
 - (ii) Find the maximum value of the length of the perimeter.
 - (iii) Find the value of x that gives a perimeter of length 200.

[9 marks]

13. [Maximum mark: 22]

Consider the graphs $y = e^{-x}$ and $y = e^{-x} \sin 4x$, for $0 \le x \le \frac{5\pi}{4}$.

(a) On the same set of axes draw, on graph paper, the graphs, for $0 \le x \le \frac{5\pi}{4}$. Use a scale of 1 cm to $\frac{\pi}{8}$ on your x-axis and 5 cm to 1 unit on your y-axis. [3 marks]

-14-

- (b) Show that the x-intercepts of the graph $y = e^{-x} \sin 4x$ are $\frac{n\pi}{4}$, n = 0, 1, 2, 3, 4, 5. [3 marks]
- (c) Find the x-coordinates of the points at which the graph of $y = e^{-x} \sin 4x$ meets the graph of $y = e^{-x}$. Give your answers in terms of π . [3 marks]
- (d) (i) Show that when the graph of $y = e^{-x} \sin 4x$ meets the graph of $y = e^{-x}$, their gradients are equal.
 - (ii) Hence explain why these three meeting points are not local maxima of the graph $y = e^{-x} \sin 4x$. [6 marks]
- (e) (i) Determine the y-coordinates, y_1 , y_2 and y_3 , where $y_1 > y_2 > y_3$, of the local maxima of $y = e^{-x} \sin 4x$ for $0 \le x \le \frac{5\pi}{4}$. You do not need to show that they are maximum values, but the values should be simplified.
 - (ii) Show that y_1 , y_2 and y_3 form a geometric sequence and determine the common ratio r. [7 marks]