

MATHEMATICS HIGHER LEVEL PAPER 2

Friday 8 May 2009 (morning)

2 hours				
---------	--	--	--	--

Candidate session number														
0														

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

21713	WCI tii	i the questions in the spaces provided. Froming may be continued below the times, i	, necessary.
1.	[Ma	eximum mark: 6]	
	heig	measured the heights of 63 students. After analysis, he conjectured that the tht, H , of the students could be modelled by a normal distribution with mean 5 cm and standard deviation 5 cm.	
	(a)	Based on this assumption, estimate the number of these students whose height is at least 170 cm.	[3 marks]
		er Bob noticed that the tape he had used to measure the heights was faulty as it sed at the 5 cm mark and not at the zero mark.	
	(b)	What are the correct values of the mean and variance of the distribution of the heights of these students?	[3 marks]

- 2. [Maximum mark: 6]
 - (a) Show that the complex number i is a root of the equation

$$x^4 - 5x^3 + 7x^2 - 5x + 6 = 0$$
.

[2 marks]

(b) Find the other roots of this equation.

[4 marks]

.....

.....

.....

.....

.....

3. [Maximum mark: 7]

Let
$$f(x) = \frac{1-x}{1+x}$$
 and $g(x) = \sqrt{x+1}, x > -1$.

Find the set of values of x for which $f'(x) \le f(x) \le g(x)$.

4.	[Ma	ximum mark: 7]	
		Lee is planning to go fishing this weekend. Assuming that the number of fish ght per hour follows a Poisson distribution with mean 0.6, find	
	(a)	the probability that he catches at least one fish in the first hour;	[2 marks]
	(b)	the probability that he catches exactly three fish if he fishes for four hours;	[2 marks]
	(c)	the number of complete hours that Mr Lee needs to fish so that the probability of catching more than two fish exceeds 80 %.	[3 marks]

J. HIGAIII III III N. O.	5.	[Maximum	mark:	6
--------------------------	----	----------	-------	---

Find the angle between the lines $\frac{x-1}{2} = 1 - y = 2z$ and $x = y = 3z$.												

(a)	Integrate $\int \frac{\sin \theta}{1-\cos \theta} d\theta$.	[3 marks]
	$J = \cos \theta$	

(b)	Given that \int	$\frac{a}{\frac{\pi}{2}} \frac{\sin \theta}{1 - \cos \theta} d\theta =$	$=\frac{1}{2}$ and	$\frac{\pi}{2} < a < \pi$, find the value of a.	[2	2 marks]
-----	-------------------	---	--------------------	--	----	----------

• • • • • • • • • • • • • • • • • • • •	 	

_		_	
7	[Maximum	mark.	QI
/ •	IVIUXIIIIUIII	mark.	OI

Consider the planes defined by the equations x+y+2z=2, 2x-y+3z=2 and 5x-y+az=5 where a is a real number.

(a) If a = 4 find the coordinates of the point of intersection of the three planes.

[2 marks]

- (b) (i) Find the value of a for which the planes do not meet at a unique point.
 - (ii) For this value of a show that the three planes do not have any common point.

[6 marks]

•	 •						•																	٠	•	 •	•	

- (a) Solve the differential equation $\frac{\cos^2 x}{e^y} e^{e^y} \frac{dy}{dx} = 0$, given that y = 0 when $x = \pi$. [7 marks]
- (b) Find the value of y when $x = \frac{\pi}{2}$. [1 mark]

•	•								•	•	•				•			•											•	•								•	•			•	•	•					•															•	•			•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•									•	•													 	•	•				•					•		•					•		•												•	•	•	•	•			•						•

							•		•	•	•	•	•		•		•	•	•		•		 	 		•	•	•				•	•	-	 	•	•	•	•	•	•	•	
				_	_		_						_		_				_		_		 		_		_	_		_				_		_	_	_			_	_	

9. [Maximum mark: 7]

The diagram below shows a circle with centre at the origin O and radius r > 0.

A point P(x, y), (x > 0, y > 0) is moving round the circumference of the circle.

Let $m = \tan\left(\arcsin\frac{y}{r}\right)$.

			(3	
(a)	Given that $\frac{dy}{dt} = 0.001r$, show that	$\frac{\mathrm{d}m}{\mathrm{d}t} =$	$\left(\frac{r}{10\sqrt{r^2-y^2}}\right)$. [6 marksj

(b)	State the geometrical meaning of $\frac{dm}{dt}$.	[1 mark]

.....

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 18]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

- (a) Given that $X = B A^{-1}$ and $Y = B^{-1} A$,
 - (i) find X and Y;
 - (ii) does $X^{-1} + Y^{-1}$ have an inverse? Justify your conclusion. [5 marks]
- (b) Prove by induction that $A^n = \begin{pmatrix} 1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$, for $n \in \mathbb{Z}^+$. [7 marks]
- (c) Given that $(A^n)^{-1} = \begin{pmatrix} 1 & x & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}$, for $n \in \mathbb{Z}^+$,
 - (i) find x and y in terms of n,
 - (ii) and hence find an expression for $A^n + (A^n)^{-1}$. [6 marks]

11. [Maximum mark: 23]

The position vector at time t of a point P is given by

$$\overrightarrow{OP} = (1+t)i + (2-2t)j + (3t-1)k, t \ge 0.$$

(a) Find the coordinates of P when t = 0.

[2 marks]

(b) Show that P moves along the line L with Cartesian equations

$$x - 1 = \frac{y - 2}{-2} = \frac{z + 1}{3} \ .$$
 [2 marks]

- (c) (i) Find the value of t when P lies on the plane with equation 2x + y + z = 6.
 - (ii) State the coordinates of P at this time.
 - (iii) Hence find the total distance travelled by P before it meets the plane.

[6 marks]

The position vector at time t of another point, Q, is given by

$$\overrightarrow{OQ} = \begin{pmatrix} t^2 \\ 1 - t \\ 1 - t^2 \end{pmatrix}, t \ge 0.$$

- (d) (i) Find the value of t for which the distance from Q to the origin is minimum.
 - (ii) Find the coordinates of Q at this time.

[6 marks]

- (e) Let a, b and c be the position vectors of Q at times t = 0, t = 1 and t = 2 respectively.
 - (i) Show that the equation a b = k(b c) has no solution for k.
 - (ii) Hence show that the path of Q is not a straight line.

[7 marks]

12. [Maximum mark: 19]

Let f be a function defined by $f(x) = x + 2\cos x$, $x \in [0, 2\pi]$. The diagram below shows a region S bound by the graph of f and the line y = x.

A and C are the points of intersection of the line y = x and the graph of f, and B is the minimum point of f.

- (a) If A, B and C have x-coordinates $a\frac{\pi}{2}$, $b\frac{\pi}{6}$ and $c\frac{\pi}{2}$, where $a,b,c\in\mathbb{N}$, find the values of a, b and c.
- (b) Find the range of f. [3 marks]
- (c) Find the equation of the normal to the graph of f at the point C, giving your answer in the form y = px + q. [5 marks]
- (d) The region S is rotated through 2π about the x-axis to generate a solid.
 - (i) Write down an integral that represents the volume V of this solid.
 - (ii) Show that $V = 6\pi^2$. [7 marks]